
Small Unmanned Aircraft : Theory and Practice.
Title:
Small Unmanned Aircraft : Theory and Practice.
Author:
Beard, Randal W.
ISBN:
9781400840601
Personal Author:
Physical Description:
1 online resource (313 pages)
Contents:
Cover -- Contents -- Preface -- 1 Introduction -- 1.1 System Architecture -- 1.2 Design Models -- 1.3 Design Project -- 2 Coordinate Frames -- 2.1 Rotation Matrices -- 2.2 MAV Coordinate Frames -- 2.3 Airspeed, Wind Speed, and Ground Speed -- 2.4 The Wind Triangle -- 2.5 Differentiation of a Vector -- 2.6 Chapter Summary -- 2.7 Design Project -- 3 Kinematics and Dynamics -- 3.1 State Variables -- 3.2 Kinematics -- 3.3 Rigid-body Dynamics -- 3.4 Chapter Summary -- 3.5 Design Project -- 4 Forces and Moments -- 4.1 Gravitational Forces -- 4.2 Aerodynamic Forces and Moments -- 4.3 Propulsion Forces and Moments -- 4.4 Atmospheric Disturbances -- 4.5 Chapter Summary -- 4.6 Design Project -- 5 Linear Design Models -- 5.1 Summary of Nonlinear Equations of Motion -- 5.2 Coordinated Turn -- 5.3 Trim Conditions -- 5.4 Transfer Function Models -- 5.5 Linear State-space Models -- 5.6 Reduced-order Modes -- 5.7 Chapter Summary -- 5.8 Design Project -- 6 Autopilot Design Using Successive Loop Closure -- 6.1 Successive Loop Closure -- 6.2 Saturation Constraints and Performance -- 6.3 Lateral-directional Autopilot -- 6.4 Longitudinal Autopilot -- 6.5 Digital Implementation of PID Loops -- 6.6 Chapter Summary -- 6.7 Design Project -- 7 Sensors for MAVs -- 7.1 Accelerometers -- 7.2 Rate Gyros -- 7.3 Pressure Sensors -- 7.4 Digital Compasses -- 7.5 Global Positioning System -- 7.6 Chapter Summary -- 7.7 Design Project -- 8 State Estimation -- 8.1 Benchmark Maneuver -- 8.2 Low-pass Filters -- 8.3 State Estimation by Inverting the Sensor Model -- 8.4 Dynamic-observer Theory -- 8.5 Derivation of the Continuous-discrete Kalman Filter -- 8.6 Attitude Estimation -- 8.7 GPS Smoothing -- 8.8 Chapter Summary -- 8.9 Design Project -- 9 Design Models for Guidance -- 9.1 Autopilot Model -- 9.2 Kinematic Model of Controlled Flight -- 9.3 Kinematic Guidance Models.
9.4 Dynamic Guidance Model -- 9.5 Chapter Summary -- 9.6 Design Project -- 10 Straight-line and Orbit Following -- 10.1 Straight-line Path Following -- 10.2 Orbit Following -- 10.3 Chapter Summary -- 10.4 Design Project -- 11 Path Manager -- 11.1 Transitions Between Waypoints -- 11.2 Dubins Paths -- 11.3 Chapter Summary -- 11.4 Design Project -- 12 Path Planning -- 12.1 Point-to-Point Algorithms -- 12.2 Coverage Algorithms -- 12.3 Chapter Summary -- 12.4 Design Project -- 13 Vision-guided Navigation -- 13.1 Gimbal and Camera Frames and Projective Geometry -- 13.2 Gimbal Pointing -- 13.3 Geolocation -- 13.4 Estimating Target Motion in the Image Plane -- 13.5 Time to Collision -- 13.6 Precision Landing -- 13.7 Chapter Summary -- 13.8 Design Project -- APPENDIX A: Nomenclature and Notation -- APPENDIX B: Quaternions -- B.1 Quaternion Rotations -- B.2 Aircraft Kinematic and Dynamic Equations -- B.3 Conversion Between Euler Angles and Quaternions -- APPENDIX C: Animations in Simulink -- C.1 Handle Graphics in Matlab -- C.2 Animation Example: Inverted Pendulum -- C.3 Animation Example: Spacecraft Using Lines -- C.4 Animation Example: Spacecraft Using Vertices and Faces -- APPENDIX D: Modeling in Simulink Using S-Functions -- D.1 Example: Second-order Differential Equation -- APPENDIX E: Airframe Parameters -- E.1 Zagi Flying Wing -- E. 2 Aerosonde UAV -- APPENDIX F: Trim and Linearization in Simulink -- F.1 Using the Simulink trim Command -- F.2 Numerical Computation of Trim -- F.3 Using the Simulink linmod Command to Generate a State-space Model -- F.4 Numerical Computation of State-space Model -- APPENDIX G: Essentials from Probability Theory -- APPENDIX H: Sensor Parameters -- H.1 Rate Gyros -- H.2 Accelerometers -- H.3 Pressure Sensors -- H.4 Digital Compass/Magnetometer -- H.5 GPS -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I.
K -- L -- M -- N -- P -- R -- S -- T -- V -- W.
Abstract:
Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View