Cover image for Applications of Transition Metal Catalysis in Drug Discovery and Development : An Industrial Perspective.
Applications of Transition Metal Catalysis in Drug Discovery and Development : An Industrial Perspective.
Title:
Applications of Transition Metal Catalysis in Drug Discovery and Development : An Industrial Perspective.
Author:
Crawley, Matthew L.
ISBN:
9781118309865
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (376 pages)
Contents:
Applications of TRANSITION METAL CATALYSIS in Drug Discovery and Development -- Contents -- Preface -- Contributors -- About the Authors -- 1 Transition Metal Catalysis in the Pharmaceutical Industry -- 1.1 Overview of Catalysis -- 1.2 Transition Metal Catalysis in the Pharmaceutical Industry -- 1.2.1 Cross-Couplings for the Formation of Carbon-Carbon Bonds -- 1.2.2 Cross-Couplings for the Formation of Carbon-Heteroatom Bonds -- 1.2.3 Asymmetric Hydrogenation -- 1.2.4 Oxidative Catalysis -- 1.2.5 Asymmetric Addition Reactions -- 1.2.6 Metathesis -- 1.3 Challenges in Taking Catalysis to Industrial Scales -- 1.4 Summary and Future Outlook -- References -- 2 Selected Applications of Transition Metal-Catalyzed Carbon-Carbon Cross-Coupling Reactions in the Pharmaceutical Industry -- 2.1 Introduction -- 2.2 Carbon-Carbon Cross-Couplings -- 2.2.1 Suzuki Coupling -- 2.2.1.1 sp2 (Aryl)-sp2 (Aryl) Coupling -- 2.2.1.2 sp2 (Aryl)-sp2 (Heteroaryl) Coupling -- 2.2.1.3 sp2 (Heteroaryl)-sp2 (Heteroaryl) Coupling -- 2.2.1.4 sp2 (Aryl)-sp2 (Vinyl) Coupling -- 2.2.1.5 sp2 (Vinyl)-sp3 Coupling -- 2.2.1.6 sp2 (Aryl)-sp3 Coupling -- 2.2.2 Negishi Coupling -- 2.2.2.1 sp2 (Aryl)-sp2 (Heteroaryl) Coupling -- 2.2.2.2 sp2 (Heteroaryl)-sp2 (Heteroaryl) Coupling -- 2.2.3 Kumada Coupling -- 2.2.4 Stille Coupling -- 2.2.5 Heck Coupling -- 2.2.5.1 Intermolecular Heck Coupling -- 2.2.5.2 Intramolecular Heck Coupling -- 2.2.6 Sonogashira Coupling -- 2.2.6.1 Aryl Alkynyl Coupling -- 2.2.6.2 Vinyl Alkynyl Coupling -- 2.2.7 Trost-Tsuji Coupling -- 2.2.8 α-Arylation -- 2.2.9 C-H Activation/Direct Arylation -- 2.2.10 Sequential Cross-Coupling Reactions -- 2.2.11 Cyanation -- 2.2.12 Carbonylation -- 2.2.13 New Technology Enabled C-C Cross-Coupling Reactions -- 2.2.13.1 Microwave-Promoted Cross-Coupling Reactions -- 2.2.13.2 Cross-Coupling Reactions Catalyzed by Immobilized Catalysts.

2.2.13.3 Automated High-Throughput Reaction Condition Screening -- 2.2.13.4 Cross-Coupling Reactions in Supercritical CO2 -- 2.2.13.5 Catalyst Screening Using Calorimetry -- 2.2.13.6 Continuous Microflow Synthesis -- 2.3 Conclusion and Prospects -- References -- 3 Selected Applications of Pd- and Cu-Catalyzed Carbon-Heteroatom Cross-Coupling Reactions in the Pharmaceutical Industry -- 3.1 Introduction -- 3.2 Carbon-Heteroatom Cross-Couplings -- 3.2.1 Pd-Catalyzed C-N Couplings -- 3.2.1.1 Introduction -- 3.2.1.2 Pd-Catalyzed C-N Couplings in the Synthesis of Approved Drugs and Clinical Candidates -- 3.2.1.3 Pd-Catalyzed C-N Couplings in Drug Discovery -- 3.2.2 Cu-Catalyzed C-N Couplings -- 3.2.2.1 Introduction -- 3.2.2.2 Cu-Catalyzed C-N Coupling to Make Approved Drugs and Clinical Candidates -- 3.2.2.3 Cu-Catalyzed C-N Coupling in Drug Discovery -- 3.2.2.4 Other C-N Couplings -- 3.2.3 Pd- or Cu-Catalyzed C-O Coupling -- 3.2.3.1 Introduction -- 3.2.3.2 C-O Coupling in the Synthesis of Approved Drugs and Clinical Candidates -- 3.2.3.3 C-O Coupling in Drug Discovery -- 3.2.4 Pd- or Cu-Catalyzed C-S Coupling -- 3.2.4.1 Introduction -- 3.2.4.2 C-S Coupling in the Synthesis of Approved Drugs and Clinical Candidates -- 3.2.4.3 C-S Coupling in Drug Discovery -- 3.2.5 Pd- or Cu-Catalyzed C-SO2R Coupling -- 3.2.6 Cu-Mediated Oxidative Coupling of Boronic Acids and Heteroatoms -- 3.2.7 Pd- or Cu-Catalyzed C-B Coupling -- 3.2.7.1 Introduction -- 3.2.7.2 C-B Coupling in the Synthesis of Approved Drugs and Clinical Candidates -- 3.2.7.3 C-B Coupling in Drug Discovery -- 3.2.7.4 C-H Activation for C-B Coupling -- 3.2.8 Pd- or Cu-Catalyzed C-P Coupling -- 3.3 Conclusions and Outlook -- References -- 4 Asymmetric Cross-Coupling Reactions -- 4.1 Introduction -- 4.2 Carbon-Carbon Coupling Reactions -- 4.2.1 Addition to C=O Bonds -- 4.2.2 Addition to C=N Bonds.

4.2.3 Addition to C=C and CHC=C Bonds -- 4.2.3.1 Conjugate Addition -- 4.2.3.2 Cycloaddition -- 4.2.3.3 Allylic Alkylation -- 4.2.4 Insertion -- 4.3 Carbon-Heteroatom Coupling Reactions -- 4.3.1 Addition of Nitrogen Nucleophiles -- 4.3.1.1 Aziridine Ring Opening -- 4.3.1.2 N-Allylation -- 4.3.1.3 Conjugate Addition -- 4.3.2 Addition of Nitrogen Electrophiles -- 4.3.3 Addition of Oxygen Nucleophiles -- 4.3.4 Insertion -- 4.4 Emerging Technologies -- 4.5 Conclusion -- References -- 5 Metathesis Reactions -- 5.1 Introduction -- 5.2 Catalyst Systems -- 5.3 Applications in Medicinal Chemistry -- 5.3.1 Synthesis of Standard Ring Sizes (5-7) by RCM -- 5.3.2 Synthesis of Medium-Sized Rings (8-9) by RCM -- 5.3.3 Synthesis of Large-Sized Rings by RCM -- 5.3.4 RCM in the Synthesis of Natural Products and Analogues -- 5.3.5 Formation of Olefins by Cross Metathesis -- 5.3.6 Metathesis Applications in Solid-Phase Synthesis -- 5.4 Applications in Process Chemistry -- 5.5 Summary and Outlook -- References -- 6 Transition Metal-Catalyzed Synthesis of Five- and Six-Membered Heterocycles -- 6.1 Introduction and Background -- 6.2 Heck Cyclization -- 6.3 Cyclization Induced by Cross-Coupling -- 6.4 Migratory Insertion-Induced Cyclization -- 6.5 Cyclization via Carbon-Heteroatom Coupling -- 6.6 Cycloisomerization -- 6.7 Ring-Closing Metathesis -- 6.8 Other Cyclizations of Interest -- 6.9 Conclusion -- References -- 7 Oxidative Catalysis -- 7.1 Introduction -- 7.2 Carbon-Oxygen Bond Oxidation -- 7.3 Allylic Oxidation (Carbon-Hydrogen Bond) -- 7.4 Carbon-Carbon Double Bond Oxidation -- 7.4.1 Epoxidation -- 7.4.2 Dihydroxylation -- 7.5 Conclusion -- References -- 8 Industrial Asymmetric Hydrogenation -- 8.1 Introduction -- 8.2 The Art of Process Development -- 8.2.1 Outlining and Assessing Synthetic Routes -- 8.2.2 Chemical Feasibility of the Enantioselective Catalytic Step.

8.2.3 Optimization and Scale-Up: Piloting the Catalytic Reaction -- 8.3 Selected Case Histories -- 8.3.1 L-Dopa (Monsanto, VEB Isis-Chemie) -- 8.3.2 (R)-HPB Ester (Ciba-Geigy, Ciba SC/Solvias) -- 8.3.2.1 Route C: Heterogeneous Hydrogenation of Ethyl 2-Oxo-4- phenylbutyrate -- 8.3.2.2 Route D: Heterogeneous Hydrogenation of Ethyl 2,4-Dioxo-4- phenylbutyrate -- 8.3.2.3 Comparison of Processes A-D -- 8.3.3 Sitagliptin (Merck) -- 8.4 Selected Effective Hydrogenation Processes -- 8.4.1 Production Processes for Penem Antibiotics and Ofloxacin Intermediates (Takasago) -- 8.4.2 Pilot Processes for Building Blocks and Intermediates (Roche) -- 8.4.3 Pilot Processes for (R)-3,5-Bis-trifluoromethylphenyl Ethanol (Solvias/Rohner, Merck) -- 8.4.4 Pilot Processes for Taranabant Intermediates (Merck) -- 8.4.5 Bench-Scale Processes for Pregabalin Intermediate (Pfizer) -- 8.4.6 Production Processes for Aliskiren Building Block (Solvias, DSM, BASF) -- 8.4.7 Production Processes for Adrenaline and Phenylephrine (Boehringer Ingelheim) -- 8.4.8 Intermediates for Biotin Synthesis (Lonza, DSM/Solvias) -- 8.4.9 Production Process for (S)-Metolachlor (Ciba-Geigy/Novartis/Solvias/Syngenta) -- 8.4.10 Processes for Citronellol Production (Takasago, Roche) -- 8.4.11 Production Process for ( + )-cis-Methyl Dihydrojasmonate (Firmenich) -- 8.5 Conclusions and Future Developments -- References -- Index.
Abstract:
"'Applications of Transition Metal Catalysis in Drug Discovery and Development' is a valuable resource in synthetic chemistry which libraries of Chemistry should have, especially those serving medicinal chemists. It captures authoritatively the rich body of information recently generated by many pharmaceutical companies on workable ways to access drug candidates, and constitutes a unique review of modern synthetic practice. The authors (all from industry) also include much relevant academic research. A high proportion of the cited literature is from the last 25 years. It emphasizes catalytic C-C and C-hetero coupling, cyclization, oxidation and reduction reactions. The writing is clear and concise." -E J Corey, Harvard University.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: