
Foam Engineering : Fundamentals and Applications.
Title:
Foam Engineering : Fundamentals and Applications.
Author:
Stevenson, Paul.
ISBN:
9781119954637
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (554 pages)
Contents:
Foam Engineering: Fundamentals and Applications -- Contents -- About the Editor -- List of Contributors -- Preface -- 1 Introduction -- 1.1 Gas-Liquid Foam in Products and Processes -- 1.2 Content of This Volume -- 1.3 A Personal View of Collaboration in Foam Research -- Part I Fundamentals -- 2 Foam Morphology -- 2.1 Introduction -- 2.2 Basic Rules of Foam Morphology -- 2.2.1 Foams, Wet and Dry -- 2.2.2 The Dry Limit -- 2.2.3 The Wet Limit -- 2.2.4 Between the Two Limits -- 2.3 Two-dimensional Foams -- 2.3.1 The Dry Limit in 2D -- 2.3.2 The Wet Limit in 2D -- 2.3.3 Between the Two Limits in 2D -- 2.4 Ordered Foams -- 2.4.1 Two Dimensions -- 2.4.2 Three Dimensions -- 2.5 Disordered Foams -- 2.6 Statistics of 3D Foams -- 2.7 Structures in Transition: Instabilities and Topological Changes -- 2.8 Other Types of Foams -- 2.8.1 Emulsions -- 2.8.2 Biological Cells -- 2.8.3 Solid Foams -- 2.9 Conclusions -- Acknowledgements -- References -- 3 Foam Drainage -- 3.1 Introduction -- 3.2 Geometric Considerations -- 3.3 A Drained Foam -- 3.4 The Continuity Equation -- 3.5 Interstitial Flow -- 3.6 Forced Drainage -- 3.7 Rigid Interfaces and Neglecting Nodes: The Original Foam Drainage Equation -- 3.8 Mobile Interfaces and Neglecting Nodes -- 3.9 Neglecting Channels: The Node-dominated Model -- 3.10 The Network Model: Combining Nodes and Channels -- 3.11 The Carman - Kozeny Approach -- 3.12 Interpreting Forced Drainage Experiments: A Detailed Look -- 3.13 Unresolved Issues -- 3.14 A Brief History of Foam Drainage -- References -- 4 Foam Ripening -- 4.1 Introduction -- 4.2 The Very Wet Limit -- 4.3 The Very Dry Limit -- 4.3.1 Inter-bubble Gas Diffusion through Thin Films -- 4.3.2 von Neumann Ripening for 2D Foams -- 4.3.3 3D Coarsening -- 4.4 Wet Foams -- 4.5 Controlling the Coarsening Rate -- 4.5.1 Gas Solubility -- 4.5.2 Resistance to Gas Permeation.
4.5.3 Shell Mechanical Strength -- 4.5.4 Bulk Modulus -- References -- 5 Coalescence in Foams -- 5.1 Introduction -- 5.2 Stability of Isolated Thin Films -- 5.2.1 Experimental Studies Dealing with Isolated Thin Liquid Films -- 5.2.2 Theoretical Description of the Rupture of an Isolated Thin Liquid Film -- 5.3 Structure and Dynamics of Foam Rupture -- 5.4 What Are the Key Parameters in the Coalescence Process? -- 5.5 How Do We Explain the Existence of a Critical Liquid Fraction? -- 5.6 Conclusion -- References -- 6 Foam Rheology -- 6.1 Introduction -- 6.2 Main Experimental and Theoretical Approaches -- 6.3 Foam Visco-elasticity -- 6.3.1 Linear Elasticity -- 6.3.2 Non-linear Elasticity -- 6.3.3 Linear Relaxations -- 6.3.4 Shear Modulus of Particle-laden Foams -- 6.4 Yielding -- 6.5 Plastic Flow -- 6.6 Viscous Dissipation in Steadily Sheared Foams -- 6.6.1 Predominant Viscous Friction in the Foam Films -- 6.6.2 Predominant Viscous Friction in the Surfactant Adsorption Layer -- 6.7 Foam-Wall Viscous Friction -- 6.8 Conclusions -- Abbreviations -- Acknowledgement -- References -- 7 Particle Stabilized Foams -- 7.1 Introduction -- 7.2 A Summary of Some Empirical Observations -- 7.3 On the Thermodynamic Stability of Particle Stabilized Foams -- 7.4 On the Ability of Particles to Stabilize Foams during Their Production -- 7.5 Design Rules for Particle Stabilized Foams -- 7.6 Conclusions -- Acknowledgement -- References -- 8 Pneumatic Foam -- 8.1 Preamble -- 8.2 Vertical Pneumatic Foam -- 8.2.1 Introduction -- 8.2.2 The Hydrodynamics of Vertical Pneumatic Foam -- 8.2.3 The 'Vertical Foam Misapprehension' -- 8.2.4 Bubble Size Distributions in Foam -- 8.2.5 Non-overflowing Pneumatic Foam -- 8.2.6 The Influence of Humidity upon Pneumatic Foam with a Free Surface -- 8.2.7 Wet Pneumatic Foam and Flooding -- 8.2.8 Shear Stress Imparted by the Column Wall.
8.2.9 Changes in Flow Cross-sectional Area -- 8.3 Horizontal Flow of Pneumatic Foam -- 8.3.1 Introduction -- 8.3.2 Lemlich's Observations -- 8.3.3 Wall-slip and Velocity Profiles -- 8.3.4 Horizontal Flow Regimes -- 8.4 Pneumatic Foam in Inclined Channels -- 8.5 Methods of Pneumatic Foam Production -- Nomenclature -- References -- 9 Non-aqueous Foams: Formation and Stability -- 9.1 Introduction -- 9.1.1 Foam Formation and Structures -- 9.1.2 Foam Stability -- 9.2 Phase Behavior of Diglycerol Fatty Acid Esters in Oils -- 9.3 Non-aqueous Foaming Properties -- 9.3.1 Effect of Solvent Molecular Structure -- 9.3.2 Effect of Surfactant Concentration -- 9.3.3 Effect of Hydrophobic Chain Length of Surfactant -- 9.3.4 Effect of Headgroup Size of Surfactant -- 9.3.5 Effect of Temperature -- 9.3.6 Effect of Water Addition -- 9.3.7 Non-aqueous Foam Stabilization Mechanism -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Suprafroth: Ageless Two-dimensional Electronic Froth -- 10.1 Introduction -- 10.2 The Intermediate State in Type-I Superconductors -- 10.3 Observation and Study of the Tubular Intermediate State Patterns -- 10.4 Structural Statistical Analysis of the Suprafroth -- Acknowledgements -- References -- Part II Applications -- 11 Froth Phase Phenomena in Flotation -- 11.1 Introduction -- 11.2 Froth Stability -- 11.3 Hydrodynamic Condition of the Froth -- 11.4 Detachment of Particles from Bubbles -- 11.5 Gangue Recovery -- 11.6 The Velocity Field of Froth Bubbles -- 11.7 Plant Experience of Froth Flotation -- 11.7.1 Introduction -- 11.7.2 Frother-constrained Plant -- 11.7.3 Sampling, Data Manipulation and Data Presentation -- 11.7.4 Process Control -- 11.7.5 The Assessment of Newly Proposed Flotation Equipment -- 11.7.6 Conclusions about Froth Flotation Drawn from Plant Experience -- Nomenclature -- References.
12 Froth Flotation of Oil Sand Bitumen -- 12.1 Introduction -- 12.2 Oil Sands -- 12.3 Mining and Slurrying -- 12.4 Froth Structure -- 12.5 Physical Properties of Froths -- 12.6 Froth Treatment -- 12.7 Conclusion -- Acknowledgements -- References -- 13 Foams in Enhancing Petroleum Recovery -- 13.1 Introduction -- 13.2 Foam Applications for the Upstream Petroleum Industry -- 13.2.1 Selection of Foam-Forming Surfactants -- 13.3 Foam Applications in Wells and Near Wells -- 13.3.1 Drilling and Completion Foams -- 13.3.2 Well Stimulation Foams: Fracturing, Acidizing, and Unloading -- 13.4 Foam Applications in Reservoir Processes -- 13.4.1 Reservoir Recovery Background -- 13.4.2 Foam Applications in Primary and Secondary Oil Recovery -- 13.4.3 Foam Applications in Enhanced (Tertiary) Oil Recovery -- 13.5 Occurrences of Foams at the Surface and Downstream -- 13.6 Conclusion -- References -- 14 Foam Fractionation -- 14.1 Introduction -- 14.2 Adsorption in Foam Fractionation -- 14.2.1 Adsorption Kinetics at Quiescent Interface -- 14.2.2 Adsorption at Dynamic Interfaces -- 14.3 Foam Drainage -- 14.4 Coarsening and Foam Stability -- 14.5 Foam Fractionation Devices and Process Intensification -- 14.5.1 Limitations of Conventional Columns -- 14.5.2 Process Intensification Devices -- 14.6 Concluding Remarks about Industrial Practice -- Nomenclature -- References -- 15 Gas-Liquid Mass Transfer in Foam -- 15.1 Introduction -- 15.2 Non-overflowing Pneumatic Foam Devices -- 15.3 Overflowing Pneumatic Foam Devices -- 15.4 The Waldhof Fermentor -- 15.5 Induced Air Methods -- 15.6 Horizontal Foam Contacting -- 15.7 Calculation of Specific Interfacial Area in Foam -- 15.8 Hydrodynamics of Pneumatic Foam -- 15.9 Mass Transfer and Equilibrium Considerations -- 15.9.1 Gas-Liquid Equilibrium -- 15.9.2 Rate of Mass Transfer -- 15.9.3 Estimation of Mass Transfer Coefficient.
15.10 Towards an Integrated Model of Foam Gas-Liquid Contactors -- 15.11 Discussion and Future Directions -- Nomenclature -- Acknowledgements -- References -- 16 Foams in Glass Manufacturing -- 16.1 Introduction -- 16.1.1 The Glass Melting Process -- 16.1.2 Melting Chemistry and Refining -- 16.1.3 Motivations -- 16.2 Glass Foams in Glass Melting Furnaces -- 16.2.1 Primary Foam -- 16.2.2 Secondary Foam -- 16.2.3 Reboil -- 16.2.4 Parameters Affecting Glass Foaming -- 16.3 Physical Phenomena -- 16.3.1 Glass Foam Physics -- 16.3.2 Surface Active Agents and Surface Tension of Gas/Melt Interface -- 16.3.3 Drainage and Stability of a Single Molten Glass Film -- 16.3.4 Gas Bubbles in Molten Glass -- 16.4 Experimental Studies -- 16.4.1 Introduction -- 16.4.2 Transient Primary and Secondary Glass Foams -- 16.4.3 Steady-state Glass Foaming by Gas Injection -- 16.5 Modeling -- 16.5.1 Introduction -- 16.5.2 Dynamic Foam Growth and Decay -- 16.5.3 Steady-state Glass Foams -- 16.5.4 Experiments and Model Limitations -- 16.6 Measures for Reducing Glass Foaming in Glass Melting Furnaces -- 16.6.1 Batch Composition -- 16.6.2 Batch Conditioning and Heating -- 16.6.3 Furnace Temperature -- 16.6.4 External and Temporary Actions -- 16.6.5 Atmosphere Composition and Flame Luminosity -- 16.6.6 Control Foaming in Reduced-pressure Refining -- 16.7 Perspective and Future Research Directions -- Acknowledgements -- References -- 17 Fire-fighting Foam Technology -- 17.1 Introduction -- 17.2 History -- 17.3 Applications -- 17.3.1 Foam Market -- 17.3.2 Hardware -- 17.4 Physical Properties -- 17.4.1 Mechanism of Action -- 17.4.2 Class A Foams -- 17.4.3 Class B Foams -- 17.5 Chemical Properties -- 17.5.1 Ingredients and Purpose -- 17.5.2 Example Recipes -- 17.6 Testing -- 17.6.1 Lab Test Methods -- 17.6.2 Fire Test Standards -- 17.7 The Future -- Acknowledgements -- References.
18 Foams in Consumer Products.
Abstract:
Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams. Key features: Foam fractionation is an exciting and emerging technology, starting to gain significant attention Discusses a vital topic for many industries, especially mineral processing, petroleum engineering, bioengineering, consumer products and food sector Links foam science theory to industrial applications, making it accessible to an engineering science audience Summarizes the latest developments in this rapidly progressing area of research Contains contributions from leading international researchers from academia and industry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View