Cover image for WORLD ACCORDING TO QUANTUM MECHANICS : Why the Laws of Physics Make Perfect Sense After All.
WORLD ACCORDING TO QUANTUM MECHANICS : Why the Laws of Physics Make Perfect Sense After All.
Title:
WORLD ACCORDING TO QUANTUM MECHANICS : Why the Laws of Physics Make Perfect Sense After All.
Author:
Mohrhoff, Ulrich.
ISBN:
9789814293389
Personal Author:
Physical Description:
1 online resource (317 pages)
Contents:
Contents -- Preface -- Overview -- 1. Probability: Basic concepts and theorems -- 1.1 The principle of indifference -- 1.2 Subjective probabilities versus objective probabilities -- 1.3 Relative frequencies -- 1.4 Adding and multiplying probabilities -- 1.5 Conditional probabilities and correlations -- 1.6 Expectation value and standard deviation -- 2. A (very) brief history of the \old" theory -- 2.1 Planck -- 2.2 Rutherford -- 2.3 Bohr -- 2.4 de Broglie -- 3. Mathematical interlude -- 3.1 Vectors -- 3.2 Definite integrals -- 3.3 Derivatives -- 3.4 Taylor series -- 3.5 Exponential function -- 3.6 Sine and cosine -- 3.7 Integrals -- 3.8 Complex numbers -- 4. A (very) brief history of the "new" theory -- 4.1 Schrodinger -- 4.2 Born -- 4.3 Heisenberg and "uncertainty" -- 4.4 Why energy is quantized -- 5. The Feynman route to Schr odinger (stage 1) -- 5.1 The rules of the game -- 5.2 Two slits -- 5.2.1 Why product? -- 5.2.2 Why inverse proportional to BA? -- 5.2.3 Why proportional to BA? -- 5.3 Interference -- 5.3.1 Limits to the visibility of interference fringes -- 5.4 The propagator as a path integral -- 5.5 The time-dependent propagator -- 5.6 A free particle -- 5.7 A free and stable particle -- 6. Special relativity in a nutshell -- 6.1 The principle of relativity -- 6.2 Lorentz transformations: General form -- 6.3 Composition of velocities -- 6.4 The case against positive K -- 6.5 An invariant speed -- 6.6 Proper time -- 6.7 The meaning of mass -- 6.8 The case against K = 0 -- 6.9 Lorentz transformations: Some implications -- 6.10 4-vectors -- 7. The Feynman route to Schr odinger (stage 2) -- 7.1 Action -- 7.2 How to inuence a stable particle? -- 7.3 Enter the wave function -- 7.4 The Schrodinger equation -- A Closer Look -- 8. Why quantum mechanics? -- 8.1 The classical probability calculus -- 8.2 Why nontrivial probabilities?.

8.3 Upgrading from classical to quantum -- 8.4 Vector spaces -- 8.4.1 Why complex numbers? -- 8.4.2 Subspaces and projectors -- 8.4.3 Commuting and non-commuting projectors -- 8.5 Compatible and incompatible elementary tests -- 8.6 Noncontextuality -- 8.7 The core postulates -- 8.8 The trace rule -- 8.9 Self-adjoint operators and the spectral theorem -- 8.10 Pure states and mixed states -- 8.11 How probabilities depend on measurement outcomes -- 8.12 How probabilities depend on the times of measurements -- 8.12.1 Unitary operators -- 8.12.2 Continuous variables -- 8.13 The rules of the game derived at last -- 9. The classical forces: Effects -- 9.1 The principle of "least" action -- 9.2 Geodesic equations for at spacetime -- 9.3 Energy and momentum -- 9.4 Vector analysis: Some basic concepts -- 9.4.1 Curl and Stokes's theorem -- 9.4.2 Divergence and Gauss's theorem -- 9.5 The Lorentz force -- 9.5.1 How the electromagnetic field bends geodesics -- 9.6 Curved spacetime -- 9.6.1 Geodesic equations for curved spacetime -- 9.6.2 Raising and lowering indices -- 9.6.3 Curvature -- 9.6.4 Parallel transport -- 9.7 Gravity -- 10. The classical forces: Causes -- 10.1 Gauge invariance -- 10.2 Fuzzy potentials -- 10.2.1 Lagrange function and Lagrange density -- 10.3 Maxwell's equations -- 10.3.1 Charge conservation -- 10.4 A fuzzy metric -- 10.4.1 Meaning of the curvature tensor -- 10.4.2 Cosmological constant -- 10.5 Einstein's equation -- 10.5.1 The energy-momentum tensor -- 10.6 Aharonov-Bohm effect -- 10.7 Fact and fiction in the world of classical physics -- 10.7.1 Retardation of effects and the invariant speed -- 11. Quantum mechanics resumed -- 11.1 The experiment of Elitzur and Vaidman -- 11.2 Observables -- 11.3 The continuous case -- 11.4 Commutators -- 11.5 The Heisenberg equation -- 11.6 Operators for energy and momentum -- 11.7 Angular momentum.

11.8 The hydrogen atom in brief -- 12. Spin -- 12.1 Spin 1/2 -- 12.1.1 Other bases -- 12.1.2 Rotations as 2 2 matrices -- 12.1.3 Pauli spin matrices -- 12.2 A Stern-Gerlach relay -- 12.3 Why spin? -- 12.4 Beyond hydrogen -- 12.5 Spin precession -- 12.6 The quantum Zeno effect -- 13. Composite systems -- 13.1 Bell's theorem: The simplest version -- 13.2 "Entangled" spins -- 13.2.1 The singlet state -- 13.3 Reduced density operator -- 13.4 Contextuality -- 13.5 The experiment of Greenberger, Horne, and Zeilinger -- 13.5.1 A game -- 13.5.2 A fail-safe strategy -- 13.6 Uses and abuses of counterfactual reasoning -- 13.7 The experiment of Englert, Scully, and Walther -- 13.7.1 The experiment with shutters closed -- 13.7.2 The experiment with shutters opened -- 13.7.3 Inuencing the past -- 13.8 Time-symmetric probability assignments -- 13.8.1 A three-hole experiment -- 14. Quantum statistics -- 14.1 Scattering billiard balls -- 14.2 Scattering particles -- 14.2.1 Indistinguishable macroscopic objects? -- 14.3 Symmetrization -- 14.4 Bosons are gregarious -- 14.5 Fermions are solitary -- 14.6 Quantum coins and quantum dice -- 14.7 Measuring Sirius -- 15. Relativistic particles -- 15.1 The Klein-Gordon equation -- 15.2 Antiparticles -- 15.3 The Dirac equation -- 15.4 The Euler-Lagrange equation -- 15.5 Noether's theorem -- 15.6 Scattering amplitudes -- 15.7 QED -- 15.8 A few words about renormalization -- 15.8.1 . . . and about Feynman diagrams -- 15.9 Beyond QED -- 15.9.1 QED revisited -- 15.9.2 Groups -- 15.9.3 Generalizing QED -- 15.9.4 QCD -- 15.9.5 Electroweak interactions -- 15.9.6 Higgs mechanism -- Making Sense -- 16. Pitfalls -- 16.1 Standard axioms: A critique -- 16.2 The principle of evolution -- 16.3 The eigenstate{eigenvalue link -- 17. Interpretational strategy -- 18. Spatial aspects of the quantum world.

18.1 The two-slit experiment revisited -- 18.1.1 Bohmian mechanics -- 18.1.2 The meaning of "both" -- 18.2 The importance of unperformed measurements -- 18.3 Spatial distinctions: Relative and contingent -- 18.4 The importance of detectors -- 18.4.1 A possible objection -- 18.5 Spatiotemporal distinctions: Not all the way down -- 18.6 The shapes of things -- 18.7 Space -- 19. The macroworld -- 20. Questions of substance -- 20.1 Particles -- 20.2 Scattering experiment revisited -- 20.3 How many constituents? -- 20.4 An ancient conundrum -- 20.5 A fundamental particle by itself -- 21. Manifestation -- 21.1 "Creation" in a nutshell -- 21.2 The coming into being of form -- 21.3 Bottom-up or top-down? -- 21.4 Whence the quantum-mechanical correlation laws? -- 21.5 How are "spooky actions at a distance" possible? -- 22. Why the laws of physics are just so -- 22.1 The stability of matter -- 22.2 Why quantum mechanics (summary) -- 22.3 Why special relativity (summary) -- 22.4 Why quantum mechanics (summary continued) -- 22.5 The classical or long-range forces -- 22.6 The nuclear or short-range forces -- 22.7 Fine tuning -- 23. Quanta and Vedanta -- 23.1 The central a rmation -- 23.2 The poises of creative consciousness -- Appendix A. Solutions to selected problems -- Bibliography -- Index.
Abstract:
An invaluable supplement to standard textbooks on quantum mechanics, this unique introduction to the general theoretical framework of contemporary physics focuses on conceptual, epistemological, and ontological issues. The theory is developed by pursuing.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: