Cover image for ENVIRONMENTAL HAZARDS : THE FLUID DYNAMICS AND GEOPHYSICS OF EXTREME EVENTS.
ENVIRONMENTAL HAZARDS : THE FLUID DYNAMICS AND GEOPHYSICS OF EXTREME EVENTS.
Title:
ENVIRONMENTAL HAZARDS : THE FLUID DYNAMICS AND GEOPHYSICS OF EXTREME EVENTS.
Author:
Moffatt, H.K.
ISBN:
9789814313292
Personal Author:
Physical Description:
1 online resource (330 pages)
Series:
LECTURE NOTES SERIES, INSTITUTE FOR MATHEMATICAL SCIENCES, NATIONAL UNIVERSITY OF SINGAPORE
Contents:
Contents -- Foreword -- Preface -- 1. A Brief Introduction to Vortex Dynamics and Turbulence H. Keith Moffatt -- 1. Introduction -- 2. Vorticity and the Biot-Savart Law -- 3. The Euler Equation and its Invariants -- 4. The Stretched Vortex of Burgers (1948) -- 5. Kelvin-Helmholtz Instability -- 6. Transient Instability and Streamwise Vortices -- 7. Turbulence, Viewed as a Random Field of Vorticity -- 8. The Kolmogorov-Obukhov Energy-Cascade Theory -- Acknowledgments -- References -- 2. Geophysical and Environmental Fluid Dynamics Tieh-Yong Koh and Paul F. Linden -- 1. Introduction -- 2. Stratified Flows -- 2.1. Surface Gravity Waves -- 2.1.1. Dimensional analysis -- 2.1.2. Exact dispersion relation -- 2.2. Froude Number -- 2.3. Stratification and Buoyancy Frequency -- 2.4. Internal Gravity Waves -- 2.5. Mountain Waves -- 2.6. Mass, Momentum and Energy Fluxes -- 3. Convection -- 3.1. Unstable Stratification -- 3.2. Parcel Argument -- 3.3. Dimensional Analysis -- 3.3.1. Rayleigh number -- 3.4. Convection Strength -- 3.5. High Rayleigh Number -- 3.6. Very High Rayleigh Number -- 4. Plumes -- 4.1. Plumes-Dimensional Analysis -- 4.2. Entrainment -- 4.2.1. Entrainment assumption -- 4.3. Self-similarity -- 4.4. Plume Rise in a Stratified Fluid -- 4.4.1. Dimensional analysis -- 4.4.2. Impact on the external environment - the "filling box" -- 4.5. Fires -- 5. Gravity Currents -- 5.1. Horizontal Stratification -- 5.2. Gravity Currents -- 5.2.1. Dimensional analysis -- 5.2.1.1. Constant velocity phase -- 5.2.1.2. Similarity phase -- 5.2.2. Laboratory verification -- 5.3. The Front Froude Number -- 6. Rotating Flows -- 6.1. Rotating Frame and the Coriolis Force -- 6.2. Inertial Oscillations -- 6.3. Rossby Radius of Deformation and Eddies -- 6.4. Buoyancy-Driven Coastal Currents -- References -- 3. Weather and Climate Emily Shuckburgh -- 1. Introduction.

2. Forcing of the Atmosphere and Ocean Circulation -- 2.1. Atmospheric Properties -- 2.2. Solar Forcing -- 2.3. Greenhouse Effect -- 2.4. Radiative Transfer -- 2.5. Climate Change -- 2.6. Further Atmospheric Properties -- 2.7. Oceanic Properties -- 2.8. Ocean Forcing -- 3. Dynamics of the Atmosphere and Oceans -- 3.1. Role of Dynamics -- 3.2. Rotating Fluids -- 3.3. Weather and Climate Models -- 3.4. Dynamical Processes -- 3.5. General Circulation of the Atmosphere -- 3.6. Ocean Circulation -- 3.7. Tropical Ocean-Atmosphere Coupling -- 4. Conclusions -- References -- 4. Dynamics of the Indian and Pacific Oceans Swadhin Behera and Toshio Yamagata -- 1. Introduction -- 2. The Tropical Climate Modes -- 2.1. The ENSO -- 2.2. The ENSO Modoki -- 2.2.1. Ocean-atmosphere coupling -- 2.2.2. ENSO Modoki vs ENSO impacts -- 2.3. The Indian Ocean Dipole -- 2.3.1. Ocean-atmosphere coupling -- 2.3.2. Triggering and termination processes -- 2.3.3. IOD impacts -- 2.3.4. IOD predictions -- 3. IOD, ENSO and ENSO Modoki Interactions -- 4. Discussions -- References -- 5. The Hurricane-Climate Connection Kerry Emanuel -- 1. Introduction -- 2. Tropical Cyclone Variability in the Instrumental Record -- 3. Paleotempestology -- 4. Attribution -- 5. Simulating Global Warming Effects on Tropical Cyclones -- 6. Effect of Tropical Cyclones on Climate -- 7. Summary -- Acknowledgments -- References -- 6. Transport and Mixing of Atmospheric Pollutants Peter H. Haynes -- 1. Motivation -- 2. Transport and Mixing in the Atmosphere -- 3. Fundamentals of Transport and Mixing -- 3.1. Definitions -- 3.2. Evolution Equations -- 3.3. Stretching in Linear Flows -- 3.4. The Relation Between Stretching and Mixing -- 3.5. "Type I" and "Type II" Flows -- 3.6. Stirring and Transport in Quasi-Two-Dimensional Flows -- 4. Modeling Approaches -- 5. Examples.

5.1. The 2000 ACTO Campaign - Combining Chemical Measurements and Backward Trajectory Calculations -- 5.2. "Around the World in 17 Days" - Transport of Smoke From Russian Forest Fires (Damoah et al., 2004) -- 5.3. "Observational and Modeling Analysis of a Severe Air Pollution Episode in Western Hong Kong" (Fung et al., 2005) -- 6. Conclusion -- References -- 7. Extreme Rain Events in Mid-Latitudes Gerd Tetzla., Janek Zimmer, and Robin Faulwetter -- 1. Motivation -- 2. Climatic Setting -- 3. Horizontal Energy Transport in the Atmosphere -- 4. Rain Making -- 5. Baroclinic Instability and the Synoptic Scale -- 6. Horizontal Wind Speed and Wind Divergence -- 7. Propagation Speed of Synoptic Weather Systems -- 8. Conceptual Results for Rain -- 9. Three Historical Mid-Latitude Extreme Rain Events -- 9.1. Central Europe: Elbe 2002 -- 9.2. England 2007 -- 9.3. Mississippi 1993 -- 10. Orographic Precipitation Modeling -- 10.1. Non-Hydrostatic Numerical Modeling: The Meso-Scale Numerical Weather Prediction Model COSMO -- 10.1.1. Basic equations -- 10.1.2. Physical parametrizations -- 10.1.3. Microphysics -- 10.1.4. Convection - parametrized vs. explicit -- 10.1.5. Turbulence -- 10.2. Sensitivity Studies of Orographic Precipitation Using the COSMO Model -- 10.3. Estimating Maximum Orographic Precipitation -- 11. Convective Precipitation -- 11.1. Mesoscale Convective Systems -- 12. Conclusion -- References -- 8. Dynamics of Hydro-Meteorological and Environmental Hazards A. W. Jayawardena -- 1. Introduction -- 2. Hydro-Meteorology -- 2.1. Weather -- 2.1.1. Weather charts -- 2.1.2. Atmospheric properties -- 2.1.3. Energy in the atmosphere -- 2.1.4. Water vapor in the atmosphere -- 2.2. Atmospheric Circulation -- 2.2.1. Forces in the atmosphere -- 2.2.2. Equations of motion -- 2.2.3. Synoptic scales of motion -- 2.2.4. Small-scale motion.

2.2.5. General Circulation Models (GCM's) -- 2.3. Weather Systems -- 2.3.1. Scales of meteorological phenomena -- 2.3.2. Monsoons -- 2.4. Extreme Weather -- 2.4.1. Cyclones -- 2.4.2. Tornadoes -- 2.4.3. Thunderstorms -- 2.4.4. Tropical depressions and storms -- 3. Hydrology -- 4. Dynamics of Water-related Environmental Hazards -- 4.1. Dynamics of Well-mixed Waterbodies -- 4.1.1. Step function input -- 4.1.2. Periodic input function -- 4.1.3. Impulse input -- 4.1.4. Arbitrary input -- 4.2. Dissolved Oxygen Systems -- 4.3. Water Quality in Rivers and Streams -- 4.3.1. Point sources -- 4.3.2. Unsteady state non-dispersive systems -- 4.3.3. Unsteady state dispersive systems -- 4.4. General Purpose Water Quality Models -- 4.4.1. Enhanced stream water quality model (QUAL2E) -- 4.4.2. Water quality analysis simulation program (WASP) -- 4.4.3. One dimensional riverine hydrodynamic and water quality model (EPD-RIV1) -- 5. Concluding Remarks -- References -- 9. Tsunami Modeling and Forecasting Techniques Pavel Tkalich and Dao My Ha -- 1. Introduction -- 2. Tsunami Modeling -- 2.1. The First Scientific Encounter of Solitons -- 2.2. Behavior of Solitons -- 2.3. Derivation of Boussinesq-Type and KdV Equations -- 2.4. Importance of Various Phenomena for Tsunami Propagation, A Sensitivity Analysis -- 3. Tsunami Forecasting -- 3.1. Tsunami Source Estimation -- 3.2. Quick Tsunami Forecasting Techniques -- 4. Conclusions -- References -- 10. Rogue Waves F. Dias, T. J. Bridges, and J. M. Dudley -- 1. Introduction -- 2. The NLS Equation -- 3. Absolute and Convective Instabilities -- 4. The Case with Only Second-order Dispersion -- 5. Classifying the Instabilities in the Presence of Third-order Dispersion -- 6. Summary and Conclusions -- Acknowledgments -- References -- Index.
Abstract:
The Institute for Mathematical Sciences at the National University of Singapore hosted a Spring School on Fluid Dynamics and Geophysics of Environmental Hazards from 19 April to 2 May 2009. This volume contains the content of the nine short lecture courses given at this School, with a focus mainly on tropical cyclones, tsunamis, monsoon flooding and atmospheric pollution, all within the context of climate variability and change. The book provides an introduction to these topics from both mathematical and geophysical points of view, and will be invaluable for graduate students in applied mathematics, geophysics and engineering with an interest in this broad field of study, as well as for seasoned researchers in adjacent fields.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: