
Nonparametric Statistical Methods and Related Topics : A FESTSCHRIFT IN HONOR OF PROFESSOR P K BHATTACHARYA ON THE OCCASION OF HIS 80TH BIRTHDAY.
Title:
Nonparametric Statistical Methods and Related Topics : A FESTSCHRIFT IN HONOR OF PROFESSOR P K BHATTACHARYA ON THE OCCASION OF HIS 80TH BIRTHDAY.
Author:
Roussas, George G.
ISBN:
9789814366571
Personal Author:
Physical Description:
1 online resource (479 pages)
Contents:
Contents -- Preface -- Review Papers -- 1. On the Scholarly Work of P. K. Bhattacharya P. Hall and F. J. Samaniego -- 1. Introduction -- 2. Early work and foundations for the future -- 3. Forays into decision theory -- 4. Work on density estimation and related problems -- 5. Special explorations -- 6. Work on statistical quality control -- 7. Work of cosmic significance -- 8. Inference about change points -- 9. Discussion -- References -- 2. The Propensity Score and Its Role in Causal Inference C. Drake and T. Loux -- 1. Introduction -- The Rubin Causal Model (RCM) -- 2. The propensity score -- 3. Propensity score estimation -- 4. Applications of propensity scores -- 5. Summary -- References -- 3. Recent Tests for Symmetry with Multivariate and Structured Data: A Review S. G. Meintanis and J. Ngatchou-Wandji -- 1. Introduction -- 2. Notions of and testing for multivariate symmetry -- 2.1. Diagonal symmetry -- 2.2. Spherical symmetry -- 2.3. Elliptical symmetry -- 3. Testing symmetry with structured data -- 3.1. Linear regression -- 3.2. Nonparametric regression -- 3.3. Conditional symmetry in time series -- 4. Testing for symmetry in random effect models -- 4.1. Model and tests -- 4.2. Specification of estimation and test statistics -- 4.3. Simulations -- 5. Other procedures for testing symmetry and conclusion -- References -- Papers on General Nonparametric Inference -- 4. On Robust Versions of Classical Tests with Dependent Data J. Jiang -- 1. Introduction -- 2. Robust Tests -- 2.1. Basic idea, assumptions, and examples -- 2.2. The W-, S-, and L- test statistics -- 3. Asymptotic theory -- 4. Application to mixed linear models -- Acknowledgments -- Appendix A. Proofs -- References -- 5. Density Estimation by Sampling from Stationary Continuous Time Parameter Associated Processes G. G. Roussas and D. Bhattacharya -- 1. Introduction.
2. Asymptotic unbiasedness and representation of the bias -- 3. Asymptotic behavior of the variance of the estimate and consistency in quadratic mean -- 4. Asymptotically uncorrelated -- 5. Uniform strong convergence of the estimates -- References -- 6. A Short Proof of the Feigin-Tweedie Theorem on the Existence of the Mean Functional of a Dirichlet Process J. Sethuraman -- 1. Introduction -- 2. Dirichlet processes -- 3. Two-parameter Dirichlet processes -- References -- 7. Max-Min Bernstein Polynomial Estimation of a Discontinuity in Distribution K.-S. Song -- 1. Introduction -- 2. Max-Min Bernstein Polynomial Estimation Method -- 3. Main Result -- 4. Proofs -- 5. Numerical Experiments -- Acknowledgments -- References -- 8. U-Statistics Based on Higher-Order Spacings D. D. Tung and S. R. Jammalamadaka -- 1. Introduction -- 2. The Asymptotic Null Distribution -- 3. The Asymptotic Distribution Under a Sequence of Close Alternatives -- 4. The Asymptotically Locally Most Powerful Test -- 5. Conclusion -- References -- 9. Nonparametric Models for Non-Gaussian Longitudinal Data N. Zhang, H.-G. M ller and J.-L. Wang -- 1. Introduction -- 2. Functional Principal Component Analysis via Quasilikelihood Maximization (FPCA-Q) -- 2.1. Model and notation -- 2.2. FPCA-Q Model -- 2.3. Estimation of Model Components -- 2.3.1. Estimation of mean and covariance function -- 2.3.2. Estimation of overdispersion and error variance -- 2.3.3. Estimation of eigenfunctions and functional principal components -- 2.3.4. Selection of the number of eigenfunctions -- 3. Other Modeling Approaches -- 3.1. The Character Process Model (CPM) -- 3.2. Cubic B-spline Models (BS) -- 3.3. Estimation for Character Process and spline models -- 3.3.1. Markov chain Monte Carlo EM algorithm (MCEM) -- 3.3.2. Simulated Maximum Likelihood Algorithm (SML) -- 4. Simulation Studies.
4.1. Design of the simulations -- 4.2. Simulation results and discussion -- Acknowledgments -- References -- Papers on Aspects of Linear or Generalized Linear Models -- 10. Better Residuals R. Beran -- 1. Introduction -- 2. An Experiment -- 3. Theoretical Framework -- 3.1. Candidate Linear Predictors of Error -- 3.2. Some Classes of Candidate Symmetric Linear Predictors -- 4. Adaptive Symmetric Linear Predictors -- 4.1. Estimating risk -- 4.2. Asymptotic Convergence of Loss, Risk, and Estimated Risk -- 4.3. Successful Adaptation -- 5. Case Studies -- 5.1. Losses and Estimated Losses in the Experiment -- 5.2. Canadian Earnings Data -- 5.3. Plasma Citrate Data -- References -- 11. The Use of Peters-Belson Regression in Legal Cases E. Bura, J. L. Gastwirth and H. Hikawa -- 1. Introduction -- 2. Parametric Peters-Belson Regression -- 2.1. Review of the method -- 3. Local Linear Peters-Belson Regression -- 3.1. Description of Local Linear PB -- 4. Application: Reanalysis of Data from EEOC v. Shelby County Government -- 5. The Suitability of Peters-Belson Regression for Studying the Class Certification Issue -- 5.1. Statistical Properties of the two Regression Approaches when the Data are Stratified -- 6. Concluding Remarks -- 7. Appendix: The Distribution of (21) when the Variances are Unequal -- References -- 12. On a Hybrid Approach to Parametric and Nonparametric Regression P. Burman and P. Chaudhuri -- 1. Introduction -- 2. Hybridization of the parametric and the nonparametric estimation procedures -- 3. Properties of the hybrid estimate -- 4. Effects of mis-specification in the parametric model and related asymptotics -- 5. Remarks and discussion -- 6. Some technical results -- Appendix A. The proofs -- Acknowledgments -- References -- 13. Nonparametric Regression Models with Integrated Covariates Z. Cai -- 1. Introduction.
2. Statistical Properties -- 2.1. Local Linear Estimation -- 2.2. Notation and Assumptions -- 2.3. Asymptotic Results -- 2.4. Nadaraya-Watson Estimation -- 3. An Illustrative Empirical Application -- 4. Discussion -- Appendix A. Proofs -- Acknowledgments -- References -- 14. A Dynamic Test for Misspecification of a Linear Model M. P. McAssey and F. Hsieh -- 1. Introduction: Modeling the linear trend in real bivariate data -- 2. Illustration: Slope underestimation with the SLM -- 3. A test for misspecification of a linear model for real data -- 4. Discussion -- Acknowledgments -- References -- 15. The Principal Component Decomposition of the Basic Martingale W. Stute -- 1. Introduction -- 2. Main Results -- 3. Limit Distribution of the CvM Test Statistic -- References -- Papers on Time Series Analysis -- 16. Fast Scatterplot Smoothing Using Blockwise Least Squares Fitting A. Aue and T. C. M. Lee -- 1. Introduction -- 2. Automatic Curve Estimation Using Blocking -- 2.1. Background -- 2.2. Automatic Selection of Number of Blocks Using MDL -- 2.3. Complexity Regularization -- 3. Pilot Estimation in Local Linear Regression -- 4. Simulation -- 4.1. Experimental Setup -- 4.2. Results -- 5. Real Data Example -- 6. Concluding Remarks -- Appendix A. Derivation of MDL(k) -- References -- 17. Some Recent Advances in Semiparametric Estimation of the GARCH Model J. Di and A. Gangopadhyay -- 1. The GARCH Model and Its Parameter Estimation -- 1.1. Parametric GARCH Estimators -- 1.2. Semiparametric GARCH Estimators -- 2. Likelihood Based Semiparametric GARCH Estimation -- 2.1. Two-step Semiparametric Estimators -- 2.2. One-step Semiparametric Estimation -- 2.3. Two-step SMLE vs. One-step SMLE -- 3. Efficiency of the Semiparametric GARCH Estimators -- 3.1. The Bias-variance Trade-off of the Semiparametric GARCH Estimators.
3.2. Adaptive Semiparametric GARCH Estimators -- 3.3. Factors that Impact the Efficiency -- 3.3.1. Selections of Kernel and Bandwidth -- 3.3.2. Trimming the Semiparametric Likelihood -- 3.3.3. Maximizing the Semiparametric Likelihood -- 4. Future Developments in Semiparametric GARCH Estimation -- Acknowledgment -- References -- 18. Extreme Dependence in Multivariate Time Series: A Review R. Sen and Z. Tan -- 1. Introduction -- 2. A brief background on Multivariate Extreme Value Theory (IID case) -- 3. Extremes of stationary time series -- 3.1. The extremal limit theorem -- 3.2. The multivariate extremal index -- 3.3. The extremal coefficient -- 3.4. The extremal correlation -- 4. Some special stationary time series -- 4.1. Multivariate maxima of moving maxima -- 4.2. Markov chains -- 5. Discussion -- References -- 19. Dynamic Mixed Models for Irregularly Observed Water Quality Data R. H. Shumway -- 1. Introduction: The Dynamic Mixed Model -- 2. Signal Extraction and Interpolation -- 2.1. Signal Extraction -- 2.2. Interpolation -- 3. Estimation of Parameters -- 3.1. Maximum Likelihood Estimation -- 3.2. Bootstrap Estimation of Standard Errors -- 4. Examples -- 4.1. Estimation of Monthly Mean Stream Flows -- 4.2. Signal Extraction for Monitoring Pesticide Concentrations in Water -- 5. Discussion and Extensions -- Dedication and Acknowledgments -- References -- Papers on Asymptotic Theory -- 20. Asymptotic Behavior of the Kernel Density Estimators for Nonstationary Dependent Random Variables with Binned Data J.-F. Lenain, M. Harel and M. L. Puri -- 1. Introduction -- 1.1. Kernel density estimators -- 1.2. Discretized kernel density estimators -- 1.3. Hypotheses of the convergence of the nonstationary process -- 2. Hypotheses and notations -- 3. Missing random variables form of the estimator -- 3.1. Bias.
3.2. Estimation of the Mean Square Error (MSE) between f and f.
Abstract:
This volume consists of 22 research papers by leading researchers in Probability and Statistics. Many of the papers are focused on themes that Professor Bhattacharya has published on research. Topics of special interest include nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory. This volume presents state-of-the-art research in statistical theory, with an emphasis on nonparametric inference, linear model theory, time series analysis and asymptotic theory. It will serve as a valuable reference to the statistics research community as well as to practitioners who utilize methodology in these areas of emphasis.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View