Cover image for GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES : PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM IN HONOR OF TAKAYUKI ODA ON THE OCCASION OF HIS 60TH BIRTHDAY.
GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES : PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM IN HONOR OF TAKAYUKI ODA ON THE OCCASION OF HIS 60TH BIRTHDAY.
Title:
GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES : PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM IN HONOR OF TAKAYUKI ODA ON THE OCCASION OF HIS 60TH BIRTHDAY.
Author:
Hamahata, Yoshinori.
ISBN:
9789814355605
Personal Author:
Physical Description:
1 online resource (388 pages)
Series:
SERIES ON NUMBER THEORY & ITS APPLICATIONS
Contents:
Contents -- Preface -- Program of symposium -- The Birch and Swinnerton-Dyer conjecture for Q-curves and Oda's period relations Henri Darmon, Victor Rotger and Yu Zhao -- 1. Introduction -- 2. Background -- 2.1. The Birch and Swinnerton-Dyer conjecture in low analytic rank -- 2.2. Oda's period relations and ATR points -- 3. The Birch and Swinnerton-Dyer conjecture for Q-curves -- 3.1. Review of Q-curves -- 3.2. The main result -- 4. Heegner points on Shimura's elliptic curves -- 4.1. An explicit Heegner point construction -- 4.2. Heegner points and ATR cycles -- 4.3. Numerical examples -- 4.4. Proof of Proposition 4.1 -- References -- The supremum of Newton polygons of p-divisible groups with a given p-kernel type Shushi Harashita -- 1. Introduction -- 2. A catalogue of p-divisible groups with a given type -- 3. Preliminaries on F-zips -- 4. Lifting of F-zips -- 5. A reduction of the problem -- 6. Extensions by a minimal p-divisible group -- 7. Proof of Proposition 5.2 -- References -- Borcherds lifts on Sp2(Z) Bernhard Heim and Atsushi Murase -- 1. Introduction and the main results -- 1.1. Introduction -- 1.2. Siegel modular forms -- 1.3. The organization of the paper -- 1.4. Notation -- 2. Borcherds lifts -- 2.1. Jacobi forms -- 2.2. Humbert surfaces -- 2.3. Siegel modular forms with a nontrivial character -- 2.4. Borcherds lifts on -- 2.5. Examples of Borcherds lifts -- 3. Proof of the main results -- 3.1. The multiplicative symmetry -- 3.2. A characterization of powers of the modular discriminant -- 3.3. The multiplicative symmetry for Sym2(Mk( 1)) -- 3.4. Proofs of Theorem 1.1 and Theorem 1.2 (i) -- 4. The weight formula -- 4.1. Cohen numbers -- 4.2. The weight formula for Borcherds lifts -- Acknowledgement -- References -- The archimedean Whittaker functions on GL(3) Miki Hirano, Taku Ishii and Tadashi Miyazaki -- 1. Introduction.

2. Preliminaries -- 2.1. Notation -- 2.2. Basic objects -- 2.3. Whittaker functions on Gn -- 2.5. The contragradient Whittaker functions -- 2.6. The generalized principal series representations of Gn = GL(n -- R) -- 2.7. The principal series representations of Gn = GL(n -- C) -- 3. Whittaker functions on G3 = GL(3 -- R) -- 3.1. Irreducible representations of K3 = O(3) -- 3.2. Whittaker functions on G3 = GL(3 -- R) at the minimal K3-types -- 3.3. Whittaker functions on G3 = GL(3 -- R) at the multiplicity one K3-types -- 4. Whittaker functions on G3 = GL(3 -- C) -- 4.1. Irreducible representations of K3 = U(3) -- 4.2. Whittaker functions on G3 = GL(3 -- C) at the minimal K3-types -- 5. The archimedean local theory of the standard L-functions for GL(n1) GL(n2) (n1 > n2) -- 5.1. The local Langlands correspondence for GL(n) over R -- 5.2. The local Langlands correspondence for GL(n) over C -- 5.3. The archimedean zeta integrals for GL(n1) GL(n2) (n1 > n2) -- 6. Calculus of the archimedean zeta integrals -- 6.1. The archimedean zeta integrals for GL(3) GL(1) -- 6.2. The proof of Theorem 6.1 -- 6.3. The archimedean zeta integrals for GL(3) GL(2) -- References -- Arithmetic properties of p-adic elliptic logarithmic functions Noriko Hirata-Kohno -- 1. Introduction -- 2. Definition of p-adic elliptic logarithmic and polylogarithmic functions -- 3. Arithmetic properties of p-adic elliptic logarithmic functions and p-adic elliptic polylogarithmic functions -- References -- Spherical functions on U(2n)/(U(n) U(n)) and hermitian Siegel series Yumiko Hironaka -- 0. Introduction -- 1. Spherical function !T (x -- s) on XT and XT -- 2. Functional equations, possible zeros and poles -- 3. Explicit formulas -- 3.1. Set -- 4. Spherical Fourier transform on S(KnXT ) -- 5. An application to hermitian Siegel series -- References.

Fourier transforms of weighted orbital integrals on the real symplectic group of rank two Werner Hoffmann -- 0. Introduction -- 1. Parametrisation of Cartan subgroups -- 2. Parametrisation of representations -- 2.1. Discrete series -- 2.2. Limits of discrete series -- 3. Guide to the results -- 4. Global characters -- 5. Characters as Fourier transforms -- 6. Geometric descent -- 7. Abelian Fourier inversion -- 8. Differential equations I -- 9. Jump relations I -- 10. Differential equations II -- 11. Normalising factors -- 12. The asymptotic formula -- 13. Jump relations II -- 14. Spectral descent -- References -- An Atkin-Lehner type theorem on Siegel modular forms and primitive Fourier coe.cients T. Ibukiyama and H. Katsurada -- 1. Introduction -- 2. Main results -- 3. Proof -- 3.1. Action of Hecke operators -- 3.2. Some group theory -- 3.3. Level change -- 3.4. Proof of main results -- References -- Cohomology of Siegel modular varieties of genus 2 and corresponding automorphic forms Takayuki Oda -- 1. Introduction -- 2. The Matsushima isomorphism and related results -- 2.1. Cohomology of discrete subgroups -- 2.2. Shift to the relative Lie algebra cohomology groups -- 2.3. Matsushima isomorphism -- 2.4. "Classical" vanishing theorems -- 2.5. Enumeration and construction of unitary cohomological representations -- 2.6. Example, the classical case SL(2 -- R) -- References -- 3. Basic rudiments on Siegel modular varieties -- 3.1. The Lie group and the associated homogeneous space, -- 3.2. The discrete subgroups -- 4. Example: The Matsushima isomorphism for compact quotients of Sp(2 -- R) -- 4.1. Finite-dimensional representations of G -- 4.2. The representations of discrete series of Sp(2 -- R) -- 4.2.1. Discrete series, or square-integrable representations -- 4.2.2. Harish-Chandra's parametrization of discrete series for Sp(2,R).

4.2.3. The discrete series with the same infinitesimal characters -- 4.2.4. K-types of a discrete series -- 4.3. Cohomological representations -- 4.4. The list of cohomological representations with trivial infinitesimal characters -- 4.4.1. Discrete series -- 4.4.2. Non-tempered cohomological representations -- 4.5. The Matsushima isomorphism for compact quotients -- 4.6. Scholia for the Matsushima isomorphism for Sp(2 -- R) -- 4.6.1. The middle components -- 4.6.2. The Dirac-Schmid operator -- 4.7. Explicit description of the automorphic realization of the Schmid equation -- 4.7.1. The natural trivialization of the bundle 2 H2 1 H2 -- 4.7.2. The G-invariant Kahler metric and the associated metric form -- 4.7.3. The natural trivialization of 1 2 and 2 2 -- 4.7.4. Decomposition of the trivialization on2 2 1 2 -- 4.7.5. Automorphic realization of the Schmid operator -- References -- 5. Analytic aspect: Spherical functions -- 5.1. Fourier expansion -- 5.1.1. Whittaker functions -- 5.1.2. Application to automorphic L-functions -- 5.1.3. Siegel-Whittaker functions -- 5.1.4. Fourier-Jacobi functions -- 5.2. Spherical functions with respect to reductive subgroups -- 5.2.1. Matrix coefficients -- 5.2.2. The cases of other spherical subgroups -- 5.3. Intertwining operators between di.erent spherical models -- 5.4. Postscript for this section -- References -- 6. Cohomology groups of Siegel modular groups of genus two -- 6.1. Definition of variants of cohomology groups -- 6.2. Cohomology groups of degree i .= 3 -- 7. The second cohomology group of Siegel modular varieties -- 7.1. Modular divisors -- 7.2. Green function associated to modular divisors -- References -- Reducibility and discrete series in the case of classical p-adic groups -- an approach based on examples Marko Tadić -- Introduction -- 1. Historical observations.

2. Smooth representations and the unitary dual -- 3. The non-unitary dual and unitary dual -- 4. Square integrable representations -- 5. Parabolic subgroups -- 6. Parabolic induction, tempered representations and the Langlands classi.cation -- 7. Parabolic induction - basic facts -- 8. Jacquet modules -- 9. The geometric lemma -- 10. Some general consequences -- 11. The case of maximal parabolic subgroups -- 12. Hopf algebras in the case of general linear groups -- 13. Square integrable representations of general linear groups -- 14. Other classical groups -- 15. Reducibility - irreducibility -- 16. Square integrability criterion -- 17. Cuspidal reducibilities -- 18. Regular induced representations -- 19. Square integrable representations of Steinberg type -- 20. A reducibility criterion -- 21. Proving irreducibility -- 22. Some half-integral examples of irreducibility -- 23. Some integral examples of irreducibility (and reducibility) -- 24. A delicate case -- 25. Langlands parameters of irreducible subquotients -- 26. An interesting integral tempered irreducibility -- 27. On R-groups -- 28. Introductory remarks on invariants of square integrable representations -- 29. An important simple example of construction of square integrable representations -- 30. A little bit more complicated example of construction of square integrable representations -- 31. Partially de.ned function -- 32. Some examples of strongly positive representations -- 34. General strongly positive representations -- 35. The general step -- References -- A survey on Voronoı̈'s theorem Takao Watanabe -- Contents -- 1. Type one functions and Voronoı̈'s theorem -- 1.1. Type one functions and semikernels -- 1.2. Vorono 's theorem of m1/. -- 1.3. Geometric characterizations of perfect forms -- 1.4. Hermite like constants -- 2. Rankin's constant and Voronoı̈'s theorem.

2.1. Rankin's constant.
Abstract:
This volume contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda's 60th birthday. It presents both research and survey articles in the fields that are the main themes of his work. The volume may serve as a guide to developing areas as well as a resource for researchers who seek a broader view and for students who are beginning to explore automorphic form.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: