Cover image for Microcirculation Imaging.
Microcirculation Imaging.
Title:
Microcirculation Imaging.
Author:
Leahy, Martin J.
ISBN:
9783527651221
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (413 pages)
Contents:
Microcirculation Imaging -- Contents -- Preface -- List of Contributors -- 1 A Historical Perspective of Imaging of the Skin and Its Gradual Uptake for Clinical Studies, Inclusive of Personal Reminiscences of Early Days of Microcirculation Societies -- 1.1 Early History -- 1.2 The Microcirculatory Societies -- 1.3 A Tour of Microcirculatory Centers in 1968 -- 1.4 TV Video Projection -- 1.5 The Third World Congress of Microcirculation -- 1.6 Perfusion Monitoring and the Advent of the Laser Doppler -- 1.7 3D and 4D Tomographic Methods -- 1.8 Nonoptical Microcirculation Imaging -- 1.9 Panel Discussions and International Convergence -- References -- 2 Sidestream Dark-Field (SDF) Video Microscopy for Clinical Imaging of the Microcirculation -- 2.1 Introduction -- 2.2 Quantifying the Functional State of the Microcirculation -- 2.3 Microcirculatory Image Acquisition -- 2.3.1 SDF Instrument -- 2.4 Automated Microcirculation Image Analysis -- 2.5 International Consensus on Microcirculation Image Acquisition and Analysis -- 2.6 Future Prospects -- 2.7 Conclusion -- References -- 3 Clinical Applications of SDF Videomicroscopy -- 3.1 Introduction -- 3.2 Microcirculatory Alterations Visualized with OPS/SDF Imaging -- 3.2.1 In Sepsis -- 3.2.2 In Severe Heart Failure and Cardiogenic Shock -- 3.2.3 During and after Cardiac Arrest -- 3.2.4 In Surgery -- 3.2.4.1 Cardiac Surgery -- 3.2.4.2 Noncardiac Surgery -- 3.2.5 Subarachnoid Hemorrhage -- 3.2.6 Dermatology -- 3.2.7 Oncology -- 3.2.8 Cirrhosis -- 3.2.9 Pediatric Use -- 3.3 Response of Microcirculatory Variables to Therapeutic Interventions -- 3.4 Perspective -- References -- 4 Laser Doppler Flowmetry -- 4.1 Theory -- 4.1.1 The Single Doppler Shift -- 4.1.2 The Doppler Power Spectrum -- 4.2 Conventional Measures -- 4.3 Hardware Realizations -- 4.3.1 LDPM -- 4.3.2 LDPI -- 4.3.3 CMOS Imager -- 4.3.4 Noise.

4.3.5 Calibration -- 4.3.6 Measurement Depth and Volume -- 4.4 Monte Carlo and LDF -- References -- 5 Toward Assessment of Speed Distribution of Red Blood Cells in Microcirculation -- 5.1 Introduction -- 5.2 Theory of Laser Doppler Spectrum Decomposition -- 5.2.1 Single Doppler Scattering -- 5.2.2 Multiple Scattering -- 5.3 Validation of the Spectrum Decomposition Method -- 5.3.1 Laser Doppler Spectra Generated by Monte Carlo Simulations -- 5.3.2 Laser Doppler Spectra Measured on the Phantom -- 5.4 In Vivo Measurements of Speed Distribution of Red Blood Cells in the Microvascular Network -- 5.5 Estimation of Anisotropy Factor -- 5.6 Conclusions and Future Developments -- 5.7 Biography -- References -- 6 Fast Full-Field Laser Doppler Perfusion Imaging -- 6.1 Introduction -- 6.2 Fast Full-Field Laser Doppler Perfusion Imaging: Why and How? -- 6.3 Characteristics of a CMOS-Based Full-Field Laser Doppler Perfusion Imager -- 6.3.1 Choice of a CMOS Camera: General Considerations -- 6.3.1.1 Commercial Device versus Tailor-Made Device? -- 6.3.1.2 Color Sensor versus Monochrome Sensor? -- 6.3.1.3 Rolling Shutter versus Global Shutter? -- 6.3.1.4 Logarithmic versus Linear Response? -- 6.3.1.5 What Frame Rate and Frame Size is Required? -- 6.3.2 Model-Based Prediction of CMOS Performance -- 6.3.3 Noise Correction in CMOS Based ffLDPI Systems -- 6.3.4 Signal Processing Aspects -- 6.4 Overview of ffLDPI Systems and Obtained Results -- 6.4.1 Systems Developed by EPFL Lausanne -- 6.4.2 Systems Developed by the University of Twente -- 6.5 Comparative Behavior of CMOS-Based Systems: How Good Are They to Measure Perfusion? -- 6.5.1 General Considerations -- 6.5.2 Comparison with Scanning Beam Systems -- 6.6 Concluding Remarks -- References -- 7 Speckle Effects in Laser Doppler Perfusion Imaging -- 7.1 Introduction -- 7.2 What Are Speckles? Basic Properties.

7.2.1 Distributions of Field Amplitude and Intensity -- 7.2.2 Speckle Contrast -- 7.2.3 Speckle Size -- 7.3 Significance of Speckles in LDPI -- 7.4 Further Analysis of the Consequence of Speckle in LDPI -- 7.4.1 Overall Sensitivity -- 7.4.2 Depth Sensitivity -- 7.5 Consequences and Concluding Remarks -- References -- 8 Laser Speckle Contrast Analysis (LASCA) for Measuring Blood Flow -- 8.1 Introduction: Fundamentals of Laser Speckle -- 8.2 Time-Varying Speckle -- 8.3 Full-Field Speckle Methods -- 8.4 Single-Exposure Speckle Photography -- 8.5 Laser Speckle Contrast Analysis (LASCA) -- 8.6 The Question of Speckle Size -- 8.7 Theory -- 8.8 Practical Considerations -- 8.9 Applications and Examples -- 8.10 Recent Developments -- 8.11 Conclusions -- Acknowledgments -- References -- 9 Tissue Viability Imaging -- 9.1 Introduction -- 9.2 Operating Principle -- 9.3 Validation -- 9.3.1 Monte Carlo Modeling -- 9.3.2 Experimental Modeling -- 9.4 Technology -- 9.4.1 Software Toolboxes -- 9.4.1.1 Skin Damage Visualizer -- 9.4.1.2 Skin Color Tracker -- 9.4.1.3 Spot Analyzer -- 9.4.1.4 Wrinkle Analyzer -- 9.4.1.5 Surface Analyzer -- 9.5 Evaluation -- 9.5.1 Iontophoresis -- 9.5.2 Lipid Studies -- 9.5.3 UV-B Studies -- 9.5.4 Temporal Studies -- 9.6 Comparison with Other Instrumentation -- 9.7 Other Technology for Polarization Imaging -- 9.8 Discussion -- References -- 10 Optical Microangiography: Theory and Application -- 10.1 Introduction -- 10.2 Optical Coherence Tomography -- 10.2.1 Principle of OCT -- 10.2.2 Frequency Domain OCT (FD-OCT) -- 10.2.3 Doppler OCT -- 10.2.3.1 Principle of Doppler OCT (DOCT) -- 10.2.3.2 An Overview of DOCT-Based Flow Imaging Modalities -- 10.3 Optical Microangiography (OMAG) -- 10.3.1 Optical Instrumentation -- 10.3.2 First-Generation OMAG -- 10.3.2.1 In Vivo Experimental Demonstration of OMAG.

10.3.2.2 Directional Flow Imaging in OMAG -- 10.3.3 Second-Generation OMAG -- 10.3.3.1 Theoretical Overview -- 10.3.4 Doppler OMAG -- 10.3.4.1 Signal Processing -- 10.3.4.2 Experimental Verification -- 10.3.4.3 In Vivo Imaging with DOMAG -- 10.3.4.4 Comparison between PRDOCT and DOMAG -- 10.4 Applications of OMAG -- 10.4.1 In Vivo Imaging of Mouse Cerebral Blood Perfusion and Vascular Plasticity Following Traumatic Brain Injury Using OMAG -- 10.4.2 Retinal and Choroidal Microvascular Perfusion Mapping with OMAG -- 10.4.3 Volumetric Imaging of Cochlear Blood Perfusion in Rodent with OMAG -- 10.5 Summary -- Acknowledgments -- References -- 11 Photoacoustic Tomography of Microcirculation -- 11.1 Introduction -- 11.2 PAT Systems -- 11.2.1 High-Resolution PAM -- 11.2.2 Real-Time PACT -- 11.3 Microcirculation Parameters Quantified by PAT -- 11.3.1 Total Hemoglobin Concentration and Microvascular Structure -- 11.3.2 Hemoglobin Oxygen Saturation -- 11.3.3 Blood Flow and Cell Counting -- 11.4 Biomedical Applications -- 11.4.1 Longitudinal Monitoring of Tumorlike Angiogenesis -- 11.4.2 Transcranial Imaging of Cortical Microvasculature -- 11.4.3 Label-Free Ophthalmic Microangiography -- 11.4.4 Real-Time Monitoring and Destruction of Circulating Cancer Cells -- 11.5 Discussion and Perspectives -- 11.5.1 Fluence Compensation for Accurate sO2 Measurements -- 11.5.2 High-Speed Imaging for Clinical Applications -- Animal Ethics -- Acknowledgments -- References -- 12 Fluorescence and OCT Imaging of Microcirculation in Early Mammalian Embryos -- 12.1 Mouse Embryo Manipulations for Live Imaging -- 12.2 Imaging Vascular Development and Microcirculation Using Confocal Microscopy of Vital Fluorescent Markers -- 12.3 Live Imaging of Mammalian Embryonic Development and Circulation with OCT -- 12.4 Summary -- References.

13 High Frequency Ultrasound for the Visualization and Quantification of the Microcirculation -- 13.1 Introduction -- 13.2 Ultrasound Fundamentals -- 13.2.1 Resolution -- 13.2.2 Reflectivity and Signal Strength -- 13.2.3 Doppler Quantification of Blood Flow -- 13.3 Instrumentation -- 13.3.1 Imaging Protocols -- 13.3.2 Microbubble Contrast Agents -- 13.4 Applications of Micro-Ultrasound in Studies of the Microcirculation -- 13.4.1 Contrast Imaging -- 13.5 Conclusions -- Acknowledgments -- References -- 14 Studying Microcirculation with Micro-CT -- 14.1 Introduction -- 14.2 Micro-Computed Tomography -- 14.2.1 History -- 14.2.2 Theory -- 14.2.3 Conventional Micro-Computed Tomography System -- 14.2.3.1 Specimen Stage Rotation Geometry -- 14.2.3.2 Source-Detector Rotation Geometry -- 14.2.4 Image Reconstruction -- 14.2.5 Image Quality -- 14.2.5.1 X-Ray Dose -- 14.2.5.2 X-Ray Beam Hardening -- 14.2.5.3 CT Image Spatial Resolution -- 14.2.5.4 Physiological Gating -- 14.2.6 Multimodality Imaging -- 14.2.6.1 Micro-Positron Emission Tomography -- 14.2.6.2 Micro-Single Photon Emission Computed Tomography -- 14.2.6.3 Digital Subtraction Angiography -- 14.2.6.4 Histology -- 14.3 Specimen/Animal Preparation -- 14.3.1 Ex Vivo - Casting -- 14.3.2 In Situ - Contrast Agent Enhancement -- 14.3.3 In Vivo -- 14.3.4 Use of Probes -- 14.3.4.1 Nano-/Microspheres -- 14.4 Image Analysis -- 14.4.1 Segmentation -- 14.4.2 Centerline Extraction -- 14.4.3 Measurements -- 14.4.3.1 Segment Length -- 14.4.3.2 Segment Diameter -- 14.4.4 Erode/Dilate Analysis -- 14.4.5 Modeling -- 14.4.5.1 Analytical -- 14.4.5.2 Computational Fluid Dynamics -- 14.5 Summary and Future Developments -- Acknowledgments -- References -- 15 Imaging Blood Circulation Using Nuclear Magnetic Resonance -- 15.1 Introduction -- 15.1.1 The NMR Signal.

15.1.2 Mechanisms by Which Microcirculation Can Alter MRI Signal.
Abstract:
Adopting a multidisciplinary approach with input from physicists, researchers and medical professionals, this is the first book to introduce many different technical approaches for the visualization of microcirculation, including laser Doppler and laser speckle, optical coherence tomography and photo-acoustic tomography. It covers everything from basic research to medical applications, providing the technical details while also outlining the respective strengths and weaknesses of each imaging technique. Edited by an international team of top experts, this is the ultimate handbook for every clinician and researcher relying on microcirculation imaging.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: