Cover image for Biophysics of Computation : Information Processing in Single Neurons.
Biophysics of Computation : Information Processing in Single Neurons.
Title:
Biophysics of Computation : Information Processing in Single Neurons.
Author:
Koch, Christof.
ISBN:
9780199760558
Personal Author:
Physical Description:
1 online resource (587 pages)
Series:
Computational Neuroscience Series
Contents:
Cover -- Contents -- Preface -- List of Symbols -- Introduction -- 1 The Membrane Equation -- 1.1 Structure of the Passive Neuronal Membrane -- 1.1.1 Resting Potential -- 1.1.2 Membrane Capacity -- 1.1.3 Membrane Resistance -- 1.2 A Simple RC Circuit -- 1.3 RC Circuits as Linear Systems -- 1.3.1 Filtering by RC Circuits -- 1.4 Synaptic Input -- 1.5 Synaptic Input Is Nonlinear -- 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant -- 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition -- 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input -- 1.6 Recapitulation -- 2 Linear Cable Theory -- 2.1 Basic Assumptions Underlying One-Dimensional Cable Theory -- 2.1.1 Linear Cable Equation -- 2.2 Steady-State Solutions -- 2.2.1 Infinite Cable -- 2.2.2 Finite Cable -- 2.3 Time-Dependent Solutions -- 2.3.1 Infinite Cable -- 2.3.2 Finite Cable -- 2.4 Neuronal Delays and Propagation Velocity -- 2.5 Recapitulation -- 3 Passive Dendritic Trees -- 3.1 Branched Cables -- 3.1.1 What Happens at Branch Points? -- 3.2 Equivalent Cylinder -- 3.3 Solving the Linear Cable Equation for Branched Structures -- 3.3.1 Exact Methods -- 3.3.2 Compartmental Modeling -- 3.4 Transfer Resistances -- 3.4.1 General Definition -- 3.4.2 An Example -- 3.4.3 Properties of K[sub(ij)] -- 3.4.4 Transfer Resistances in a Pyramidal Cell -- 3.5 Measures of Synaptic Efficiency -- 3.5.1 Electrotonic Distance -- 3.5.2 Voltage Attenuation -- 3.5.3 Charge Attenuation -- 3.5.4 Graphical Morphoelectrotonic Transforms -- 3.6 Signal Delays in Dendritic Trees -- 3.6.1 Experimental Determination of T[sub(m)] -- 3.6.2 Local and Propagation Delays in Dendritic Trees -- 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters -- 3.7 Recapitulation -- 4 Synaptic Input -- 4.1 Neuronal and Synaptic Packing Densities -- 4.2 Synaptic Transmission Is Stochastic.

4.2.1 Probability of Synaptic Release p -- 4.2.2 What Is the Synaptic Weight? -- 4.3 Neurotransmitters -- 4.4 Synaptic Receptors -- 4.5 Synaptic Input as Conductance Change -- 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance -- 4.5.2 Conductance Decreasing Synapses -- 4.6 Excitatory NMDA and Non-NMDA Synaptic Input -- 4.7 Inhibitory GABAergic Synaptic Input -- 4.8 Postsynaptic Potential -- 4.8.1 Stationary Synaptic Input -- 4.8.2 Transient Synaptic Input -- 4.8.3 Infinitely Fast Synaptic Input -- 4.9 Visibility of Synaptic Inputs -- 4.9.1 Input Impedance in the Presence of Synaptic Input -- 4.10 Electrical Gap Junctions -- 4.11 Recapitulation -- 5 Synaptic Interactions in a Passive Dendritic Tree -- 5.1 Nonlinear Interaction among Excitation and Inhibition -- 5.1.1 Absolute versus Relative Suppression -- 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree -- 5.1.3 Location of the Inhibitory Synapse -- 5.1.4 Shunting Inhibition Implements a "Dirty" Multiplication -- 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction -- 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates -- 5.1.7 Retinal Directional Selectivity and Synaptic Logic -- 5.2 Nonlinear Interaction among Excitatory Synapses -- 5.2.1 Sensitivity of Synaptic Input to Spatial Clustering -- 5.2.2 Cluster Sensitivity for Pattern Discrimination -- 5.2.3 Detecting Coincident Input from the Two Ears -- 5.3 Synaptic Microcircuits -- 5.4 Recapitulation -- 6 The Hodgkin-Huxley Model of Action Potential Generation -- 6.1 Basic Assumptions -- 6.2 Activation and Inactivation States -- 6.2.1 Potassium Current I[sub(K)] -- 6.2.2 Sodium Current I[sub(Na)] -- 6.2.3 Complete Model -- 6.3 Generation of Action Potentials -- 6.3.1 Voltage Threshold for Spike Initiation -- 6.3.2 Refractory Period.

6.4 Relating Firing Frequency to Sustained Current Input -- 6.5 Action Potential Propagation along the Axon -- 6.5.1 Empirical Determination of the Propagation Velocity -- 6.5.2 Nonlinear Wave Propagation -- 6.6 Action Potential Propagation in Myelinated Fibers -- 6.7 Branching Axons -- 6.8 Recapitulation -- 7 Phase Space Analysis of Neuronal Excitability -- 7.1 The FitzHugh-Nagumo Model -- 7.1.1 Nullclines -- 7.1.2 Stability of the Equilibrium Points -- 7.1.3 Instantaneous Current Pulses: Action Potentials -- 7.1.4 Sustained Current Injection: A Limit Cycle Appears -- 7.1.5 Onset of Nonzero Frequency Oscillations: The Hopf Bifurcation -- 7.2 The Morris-Lecar Model -- 7.2.1 Abrupt Onset of Oscillations -- 7.2.2 Oscillations with Arbitrarily Small Frequencies -- 7.3 More Elaborate Phase Space Models -- 7.4 Recapitulation -- 8 Ionic Channels -- 8.1 Properties of Ionic Channels -- 8.1.1 Biophysics of Channels -- 8.1.2 Molecular Structure of Channels -- 8.2 Kinetic Model of the Sodium Channel -- 8.3 From Stochastic Channels to Deterministic Currents -- 8.3.1 Probabilistic Interpretation -- 8.3.2 Spontaneous Action Potentials -- 8.4 Recapitulation -- 9 Beyond Hodgkin and Huxley: Calcium and Calcium-Dependent Potassium Currents -- 9.1 Calcium Currents -- 9.1.1 Goldman-Hodgkin-Katz Current Equation -- 9.1.2 High-Threshold Calcium Current -- 9.1.3 Low-Threshold Transient Calcium Current -- 9.1.4 Low-Threshold Spike in Thalamic Neurons -- 9.1.5 N-Type Calcium Current -- 9.1.6 Calcium as a Measure of the Spiking Activity of the Neuron -- 9.2 Potassium Currents -- 9.2.1 Transient Potassium Currents and Delays -- 9.2.2 Calcium-Dependent Potassium Currents -- 9.3 Firing Frequency Adaptation -- 9.4 Other Currents -- 9.5 An Integrated View -- 9.6 Recapitulation -- 10 Linearizing Voltage-Dependent Currents -- 10.1 Linearization of the Potassium Current.

10.2 Linearization of the Sodium Current -- 10.3 Linearized Membrane Impedance of a Patch of Squid Axon -- 10.4 Functional Implications of Quasi-Active Membranes -- 10.4.1 Spatio-Temporal Filtering -- 10.4.2 Temporal Differentiation -- 10.4.3 Electrical Tuning in Hair Cells -- 10.5 Recapitulation -- 11 Diffusion, Buffering, and Binding -- 11.1 Diffusion Equation -- 11.1.1 Random Walk Model of Diffusion -- 11.1.2 Diffusion in Two or Three Dimensions -- 11.1.3 Diffusion Coefficient -- 11.2 Solutions to the Diffusion Equation -- 11.2.1 Steady-State Solution for an Infinite Cable -- 11.2.2 Time-Dependent Solution for an Infinite Cable -- 11.2.3 Square-Root Relationship of Diffusion -- 11.3 Electrodiffusion and the Nernst-Planck Equation -- 11.3.1 Relationship between the Electrodiffusion Equation and the Cable Equation -- 11.3.2 An Approximation to the Electrodiffusion Equation -- 11.4 Buffering of Calcium -- 11.4.1 Second-Order Buffering -- 11.4.2 Higher Order Buffering -- 11.5 Reaction-Diffusion Equations -- 11.5.1 Experimental Visualization of Calcium Transients in Diffusion-Buffered Systems -- 11.6 Ionic Pumps -- 11.7 Analogy between the Cable Equation and the Reaction-Diffusion Equation -- 11.7.1 Linearization -- 11.7.2 Chemical Dynamics and Space and Time Constants of the Diffusion Equation -- 11.8 Calcium Nonlinearities -- 11.9 Recapitulation -- 12 Dendritic Spines -- 12.1 Natural History of Spines -- 12.1.1 Distribution of Spines -- 12.1.2 Microanatomy of Spines -- 12.1.3 Induced Changes in Spine Morphology -- 12.2 Spines only Connect -- 12.3 Passive Electrical Properties of Single Spines -- 12.3.1 Current Injection into a Spine -- 12.3.2 Excitatory Synaptic Input to a Spine -- 12.3.3 Joint Excitatory and Inhibitory Input to a Spine -- 12.3.4 Geniculate Spine Triad -- 12.4 Active Electrical Properties of Single Spines.

12.5 Effect of Spines on Cables -- 12.6 Diffusion in Dendritic Spines -- 12.6.1 Solutions of the Reaction-Diffusion Equation for Spines -- 12.6.2 Imaging Calcium Dynamics in Single Dendritic Spines -- 12.7 Recapitulation -- 13 Synaptic Plasticity -- 13.1 Quantal Release -- 13.2 Short-Term Synaptic Enhancement -- 13.2.1 Facilitation Is an Increase in Release Probability -- 13.2.2 Augmentation and Posttetanic Potentiation -- 13.2.3 Synaptic Release and Presynaptic Calcium -- 13.3 Long-Term Synaptic Enhancement -- 13.3.1 Long-Term Potentiation -- 13.3.2 Short-Term Potentiation -- 13.4 Synaptic Depression -- 13.5 Synaptic Algorithms -- 13.5.1 Hebbian Learning -- 13.5.2 Temporally Asymmetric Hebbian Learning Rules -- 13.5.3 Sliding Threshold Rule -- 13.5.4 Short-Term Plasticity -- 13.5.5 Unreliable Synapses: Bug or Feature? -- 13.6 Nonsynaptic Plasticity -- 13.7 Recapitulation -- 14 Simplified Models of Individual Neurons -- 14.1 Rate Codes, Temporal Coding, and All of That -- 14.2 Integrate-and-Fire Models -- 14.2.1 Perfect or Nonleaky Integrate-and-Fire Unit -- 14.2.2 Forgetful or Leaky Integrate-and-Fire Unit -- 14.2.3 Other Variants -- 14.2.4 Response Time of Integrate-and-Fire Units -- 14.3 Firing Rate Models -- 14.3.1 Comparing the Dynamics of a Spiking Cell with a Firing Rate Cell -- 14.4 Neural Networks -- 14.4.1 Linear Synaptic Interactions Are Common to Almost All Neural Networks -- 14.4.2 Multiplicative Interactions and Neural Networks -- 14.5 Recapitulation -- 15 Stochastic Models of Single Cells -- 15.1 Random Processes and Neural Activity -- 15.1.1 Poisson Process -- 15.1.2 Power Spectrum Analysis of Point Processes -- 15.2 Stochastic Activity in Integrate-and-Fire Models -- 15.2.1 Interspike Interval Histogram -- 15.2.2 Coefficient of Variation -- 15.2.3 Spike Count and Fano Factor -- 15.2.4 Random Walk Model of Stochastic Activity.

15.2.5 Random Walk in the Presence of a Leak.
Abstract:
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience,

electrical and computer engineering, and physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: