
Space Antenna Handbook.
Title:
Space Antenna Handbook.
Author:
Imbriale, William A.
ISBN:
9781119945130
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (774 pages)
Contents:
Space Antenna HANDBOOK -- Contents -- Preface -- Acknowledgments -- Acronyms -- Contributors -- 1 Antenna Basics -- 1.1 Introduction -- 1.2 Antenna Performance Parameters -- 1.2.1 Reflection Coefficient and Voltage Standing Wave Ratio -- 1.2.2 Antenna Impedance -- 1.2.3 Radiation Pattern and Coverage -- 1.2.4 Polarization -- 1.2.5 Directivity -- 1.2.6 Gain and Realized Gain -- 1.2.7 Equivalent Isotropically Radiated Power -- 1.2.8 Effective Area -- 1.2.9 Phase Center -- 1.2.10 Bandwidth -- 1.2.11 Antenna Noise Temperature -- 1.3 Basic Antenna Elements -- 1.3.1 Wire Antennas -- 1.3.2 Horn Antennas -- 1.3.3 Reflectors -- 1.3.4 Helical Antennas -- 1.3.5 Printed Antennas -- 1.4 Arrays -- 1.4.1 Array Configurations -- 1.5 Basic Effects of Antennas in the Space Environment -- 1.5.1 Multipaction -- 1.5.2 Passive Inter-modulation -- 1.5.3 Outgassing -- References -- 2 Space Antenna Modeling -- 2.1 Introduction -- 2.1.1 Maxwell's Equations -- 2.1.2 CEM -- 2.2 Methods of Antenna Modeling -- 2.2.1 Basic Theory -- 2.2.2 Method of Moments -- 2.2.3 FEM -- 2.2.4 FDTD Method -- 2.3 Fast Algorithms for Large Space Antenna Modeling -- 2.3.1 Introduction -- 2.3.2 MLFMA -- 2.3.3 Hierarchical Basis for the FEM -- 2.4 Case Studies: Effects of the Satellite Body on the Radiation Patterns of Antennas -- 2.5 Summary -- Acknowledgments -- References -- 3 System Architectures of Satellite Communication, Radar, Navigation and Remote Sensing -- 3.1 Introduction -- 3.2 Elements of Satellite System Architecture -- 3.3 Satellite Missions -- 3.4 Communications Satellites -- 3.4.1 Fixed Satellite Services -- 3.4.2 Broadcast Satellite Services (Direct Broadcast Services) -- 3.4.3 Digital Audio Radio Services -- 3.4.4 Direct to Home Broadband Services -- 3.4.5 Mobile Communications Services -- 3.5 Radar Satellites -- 3.6 Navigational Satellites -- 3.7 Remote Sensing Satellites.
3.8 Architecture of Satellite Command and Control -- 3.9 The Communications Payload Transponder -- 3.9.1 Bent-Pipe Transponders -- 3.9.2 Digital Transponders -- 3.9.3 Regenerative Repeater -- 3.10 Satellite Functional Requirements -- 3.10.1 Key Performance Concepts: Coverage, Frequency Allocations -- 3.10.2 Architecture of the Communications Payload -- 3.10.3 Satellite Communications System Performance Requirements -- 3.11 The Satellite Link Equation -- 3.12 The Microwave Transmitter Block -- 3.12.1 Intercept Point -- 3.12.2 Output Backoff -- 3.12.3 The Transmit Antenna and EIRP -- 3.13 Rx Front-End Block -- 3.13.1 Noise Figure and Noise Temperature -- 3.14 Received Power in the Communications System's RF Link -- 3.14.1 The Angular Dependencies of the Uplink and Downlink -- 3.15 Additional Losses in the Satellite and Antenna -- 3.15.1 Additional Losses due to Propagation Effects and the Atmosphere -- 3.15.2 Ionospheric Effects - Scintillation and Polarization Rotation -- 3.16 Thermal Noise and the Antenna Noise Temperature -- 3.16.1 The Interface between the Antenna and the Communications System -- 3.16.2 The Uplink Signal to Noise -- 3.17 The SNR Equation and Minimum Detectable Signal -- 3.18 Power Flux Density, Saturation Flux Density and Dynamic Range -- 3.18.1 Important Relationship between PFD and Gain State of the Satellite Transponder -- 3.19 Full-Duplex Operation and Passive Intermodulation -- 3.20 Gain and Gain Variation -- 3.21 Pointing Error -- 3.22 Remaining Elements of Satellite System Architecture -- 3.23 Orbits and Orbital Considerations -- 3.24 Spacecraft Introduction -- 3.25 Spacecraft Budgets (Mass, Power, Thermal) -- 3.25.1 Satellite Mass -- 3.25.2 Satellite Power -- 3.25.3 Satellite Thermal Dissipation -- 3.26 Orbital Mission Life and Launch Vehicle Considerations -- 3.27 Environment Management (Thermal, Radiation).
3.28 Spacecraft Structure (Acoustic/Dynamic) -- 3.29 Satellite Positioning (Station Keeping) -- 3.30 Satellite Positioning (Attitude Control) -- 3.31 Power Subsystem -- 3.32 Tracking, Telemetry, Command and Monitoring -- References -- 4 Space Environment and Materials -- 4.1 Introduction -- 4.2 The Space Environment of Antennas -- 4.2.1 The Radiation Environment -- 4.2.2 The Plasma Environment -- 4.2.3 The Neutral Environment -- 4.2.4 Space Environment for Typical Spacecraft Orbits -- 4.2.5 Thermal Environment -- 4.2.6 Launch Environment -- 4.3 Selection of Materials in Relation to Their Electromagnetic Properties -- 4.3.1 RF Transparent Materials and Their Use -- 4.3.2 RF Conducting Materials and Their Use -- 4.3.3 Material Selection Golden Rules for PIM Control -- 4.4 Space Materials and Manufacturing Processes -- 4.4.1 Metals and Their Alloys -- 4.4.2 Polymer Matrix Composites -- 4.4.3 Ceramics and Ceramic Matrix Composites -- 4.5 Characterization of Mechanical and Thermal Behaviour -- 4.5.1 Thermal Vacuum Environment and Outgassing Screening -- 4.5.2 Fundamental Characterization Tests of Polymers and Composites -- 4.5.3 Characterization of Mechanical Properties -- 4.5.4 Thermal and Thermoelastic Characterization -- Acknowledgements -- References -- 5 Mechanical and Thermal Design of Space Antennas -- 5.1 Introduction: The Mechanical-Thermal-Electrical Triangle -- 5.1.1 Antenna Product -- 5.1.2 Configuration, Materials and Processes -- 5.1.3 Review of Requirements and Their Verification -- 5.2 Design of Antenna Structures -- 5.2.1 Typical Design Solutions for Reflectors -- 5.2.2 Structural Description of the Sandwich Plate Architecture -- 5.2.3 Thermal Description of the Sandwich Plate Architecture -- 5.2.4 Electrical Description of the Sandwich Plate Architecture in Relation to Thermo-mechanical Design -- 5.3 Structural Modelling and Analysis.
5.3.1 First-Order Plate Theory -- 5.3.2 Higher Order Plate Theories -- 5.3.3 Classical Laminated Plate Theory -- 5.3.4 Homogeneous Isotropic Plate Versus Symmetric Sandwich Plate -- 5.3.5 Skins Made of Composite Material -- 5.3.6 Honeycomb Core Characteristics -- 5.3.7 Failure Modes of Sandwich Plates -- 5.3.8 Mass Optimization of Sandwich Plate Architecture for Antennas -- 5.3.9 Finite Element Analysis -- 5.3.10 Acoustic Loads on Antennas -- 5.4 Thermal and Thermoelastic Analysis -- 5.4.1 The Thermal Environment of Space Antennas -- 5.4.2 Transverse Thermal Conductance Model of the Sandwich Plate -- 5.4.3 Thermal Balance of the Flat Sandwich Plate -- 5.4.4 Thermal Distortions of a Flat Plate in Space -- 5.4.5 Thermoelastic Stability of an Offset Parabolic Reflector -- 5.4.6 Thermal Analysis Tools -- 5.4.7 Thermal Analysis Cases -- 5.4.8 Thermal Model Uncertainty and Margins -- 5.5 Thermal Control Strategies -- 5.5.1 Requirements and Principal Design Choices -- 5.5.2 Thermal Control Components -- 5.5.3 Thermal Design Examples -- Acknowledgements -- References -- 6 Testing of Antennas for Space -- 6.1 Introduction -- 6.2 Testing as a Development and Verification Tool -- 6.2.1 Engineering for Test -- 6.2.2 Model Philosophy and Definitions -- 6.2.3 Electrical Model Correlation -- 6.2.4 Thermal Testing and Model Correlation -- 6.3 Antenna Testing Facilities -- 6.3.1 Far-Field Antenna Test Ranges -- 6.3.2 Compact Antenna Test Ranges -- 6.3.3 Near-Field Measurements and Facilities -- 6.3.4 Environmental Test Facilities and Mechanical Testing -- 6.3.5 PIM Testing -- 6.4 Case Study: SMOS -- 6.4.1 The SMOS MIRAS Instrument -- 6.4.2 SMOS Model Philosophy -- 6.4.3 Antenna Pattern Test Campaign -- References -- 7 Historical Overview of the Development of Space Antennas -- 7.1 Introduction -- 7.2 The Early Days.
7.2.1 Wire and Slot Antennas on Simple Satellite Bodies -- 7.2.2 Antenna Computer Modelling Takes Off -- 7.2.3 Existing/Classical Antenna Designs Adapted for Space -- 7.3 Larger Reflectors with Complex Feeding Systems -- 7.3.1 Introduction -- 7.3.2 Multi-frequency Antennas -- 7.3.3 Large Unfurlable Antennas -- 7.3.4 Solid Surface Deployable Reflector Antennas -- 7.3.5 Polarization-Sensitive and Shaped Reflectors -- 7.3.6 Multi-feed Antennas -- 7.4 Array Antennas -- 7.4.1 Conformal Arrays on Spin-Stabilized Satellites -- 7.4.2 Arrays for Remote Sensing -- 7.4.3 Arrays for Telecommunications -- 7.5 Conclusions -- Acknowledgements -- References -- 8 Deployable Mesh Reflector Antennas for Space Applications: RF Characterizations -- 8.1 Introduction -- 8.2 History of Deployable Mesh Reflectors -- 8.3 Design Considerations Specific to Mesh Reflectors -- 8.4 The SMAP Mission - A Representative Case Study -- 8.4.1 Mission Overview -- 8.4.2 Key Antenna Design Drivers and Constraints -- 8.4.3 RF Performance Determination of Reflector Surface Materials -- 8.4.4 RF Modeling of the Antenna Radiation Pattern -- 8.4.5 Feed Assembly Design -- 8.4.6 Performance Verification -- 8.5 Conclusion -- Acknowledgments -- References -- 9 Microstrip Array Technologies for Space Applications -- 9.1 Introduction -- 9.2 Basics of Array Antennas -- 9.2.1 Functional (Driving) Requirements and Array Design Solutions -- 9.2.2 Materials for Passive Arrays Versus Environmental and Design Requirements -- 9.2.3 Array Optimization Methods and Criteria -- 9.3 Passive Arrays -- 9.3.1 Radiating Panels for SAR Antennas -- 9.3.2 Navigation Antennas -- 9.3.3 Passive Antennas for Deep Space -- 9.4 Active Arrays -- 9.4.1 Key Active Elements in Active Antennas: Amplifiers -- 9.4.2 Active Hybrids -- 9.4.3 The Thermal Dissipation Design Solution -- 9.4.4 Active Array Control.
9.4.5 Active Arrays for Communications and Data Transmission.
Abstract:
This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications. Key Features: Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep-space applications Addresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualification Includes numerous case studies to demonstrate how to design and implement antennas in practical scenarios Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennas This book serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering, It also aids engineers
technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View