
Geothermal Power Plants : Principles, Applications, Case Studies and Environmental Impact.
Title:
Geothermal Power Plants : Principles, Applications, Case Studies and Environmental Impact.
Author:
DiPippo, Ronald.
ISBN:
9780123947871
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (625 pages)
Contents:
Front Cover -- Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact -- Copyright page -- Contents -- Foreword to the Third Edition -- Preface and Acknowledgements to the Third Edition -- Preface and Acknowledgements to the Second Edition -- Preface and Acknowledgments to the First Edition -- 1. Resource Identification and Development -- 1. Geology of Geothermal Regions -- 1.1 Introduction -- 1.2 The Earth and its atmosphere -- 1.3 Active geothermal regions -- 1.4 Model of a hydrothermal geothermal resource -- 1.5 Other types of geothermal resources -- 1.5.1 Hot Dry Rock, HDR -- 1.5.2 Geopressure -- 1.5.3 Magma energy -- 1.5.4 Deep hydrothermal -- References -- Problems -- 2. Exploration Strategies and Techniques -- 2.1 Introduction -- 2.2 Objectives of an exploration program -- 2.3 Phases of an exploration program -- 2.3.1 Literature survey -- 2.3.2 Airborne survey -- 2.3.3 Geologic survey -- 2.3.4 Hydrologic survey -- 2.3.5 Geochemical survey -- 2.3.6 Geophysical survey -- 2.4 Synthesis and interpretation -- 2.5 The next step: Drilling -- References -- Problems -- 3. Geothermal Well Drilling -- 3.1 Introduction -- 3.2 Site preparation and drilling equipment -- 3.3 Drilling operations -- 3.4 Safety precautions -- References -- 4. Reservoir Engineering -- 4.1 Introduction -- 4.2 Reservoir and well flow -- 4.2.1 Darcy's Law -- 4.2.2 Reservoir-well model: Ideal case -- 4.2.3 Reservoir-well model: Basic principles -- 4.2.4 Liquid-only flow -- 4.2.5 Location of the flash horizon -- 4.2.6 Two-phase flow in the well -- 4.2.7 Complete model: Reservoir to wellhead with wellbore flashing -- 4.3 Well testing -- 4.3.1 Desired information -- 4.3.2 Pressure and temperature instrumentation -- 4.3.3 Direct mass flow rate measurements -- 4.3.4 Indirect mass flow rate measurements.
4.3.5 Transient pressure measurements and analysis -- 4.4 Calcite scaling in well casings -- 4.5 Reservoir modeling and simulation -- 4.5.1 Input -- 4.5.2 Architecture -- 4.5.3 Calibration and validation -- 4.5.4 History matching -- 4.5.5 Use of the model -- 4.5.6 Examples of reservoir simulators -- References -- Problems -- 2. Geothermal Power Generating Systems -- 5. Single-Flash Steam Power Plants -- 5.1 Introduction -- 5.2 Gathering system design considerations -- 5.2.1 Piping layouts -- 5.2.2 Pressure losses -- 5.3 Energy conversion system -- 5.4 Thermodynamics of the conversion process -- 5.4.1 Temperature-entropy process diagram -- 5.4.2 Flashing process -- 5.4.3 Separation process -- 5.4.4 Turbine expansion process -- 5.4.5 Condensing process -- 5.4.6 Cooling tower process -- 5.4.7 Utilization efficiency -- 5.5 Example: Single-flash optimization -- 5.5.1 Choked well flow -- 5.5.2 Non-choked well flow -- 5.6 Optimum separator temperature: An approximate formulation -- 5.7 Environmental aspects for single-flash plants -- 5.7.1 General considerations -- 5.7.2 Considerations pertaining to single-flash plants -- 5.8 Equipment list for single-flash plants -- 5.8.1 Wellhead, brine and steam supply system -- 5.8.2 Turbine-generator and controls -- 5.8.3 Condenser, gas ejection and pollution control (where needed) -- 5.8.4 Heat rejection system -- 5.8.5 Back-up systems -- 5.8.6 Noise abatement system (where required) -- 5.8.7 Geofluid disposal system -- References -- Nomenclature for figures in Chapter 5 -- Problems -- 6. Double-Flash Steam Power Plants -- 6.1 Introduction -- 6.2 Gathering system design considerations -- 6.3 Energy conversion system -- 6.4 Thermodynamics of the conversion process -- 6.4.1 Temperature-entropy process diagram -- 6.4.2 Flash and separation processes -- 6.4.3 HP- and LP-turbine expansion processes.
6.4.4 Condensing and cooling tower processes -- utilization efficiency -- 6.4.5 Optimization methodology -- 6.5 Example: Double-flash optimization -- 6.6 Scale potential in waste brine -- 6.6.1 Silica chemistry -- 6.6.2 Silica scaling potential in flash plants -- 6.7 Environmental aspects for double-flash plants -- 6.8 Equipment list for double-flash plants -- 6.8.1 Wellhead, brine and steam supply system -- 6.8.2 Turbine-generator and controls -- 6.8.3 Condenser, gas ejection and pollution control (where needed) -- 6.8.4 Heat rejection system -- 6.8.5 Back-up systems -- 6.8.6 Noise abatement system (where required) -- 6.8.7 Geofluid disposal system -- References -- Nomenclature for figures in Chapter 6 -- Problems -- 7. Dry-Steam Power Plants -- 7.1 Introduction -- 7.2 Origins and nature of dry-steam resources -- 7.3 Steam gathering system -- 7.4 Energy conversion system -- 7.4.1 Turbine expansion process -- 7.4.2 Condensing and cooling tower processes -- utilization efficiency -- 7.5 Example: Optimum wellhead pressure -- 7.6 Environmental aspects of dry-steam plants -- 7.7 Equipment list for dry-steam plants -- 7.7.1 Steam supply system -- 7.7.2 Turbine-generator and controls -- 7.7.3 Condenser, gas ejection and pollution control (where needed) -- 7.7.4 Heat rejection system -- 7.7.5 Back-up systems -- 7.7.6 Noise abatement system (where required) -- 7.7.7 Condensate disposal system -- References -- Nomenclature for figures in Chapter 7 -- Problems -- 8. Binary Cycle Power Plants -- 8.1 Introduction -- 8.2 Basic binary systems -- 8.2.1 Turbine analysis -- 8.2.2 Condenser analysis -- 8.2.3 Feed pump analysis -- 8.2.4 Heat exchanger analysis: Preheater and evaporator -- 8.2.5 Overall cycle analysis -- 8.3 Working fluid selection -- 8.3.1 Thermodynamic properties -- 8.3.2 Sonic velocity and turbine size.
8.3.3 Health, safety, and environmental considerations -- 8.4 Advanced binary cycles -- 8.4.1 Ideal binary cycle -- 8.4.2 Dual-pressure binary cycle -- 8.4.3 Dual-fluid binary cycle -- 8.4.4 Kalina binary cycles -- 8.5 Example of binary cycle analysis -- 8.6 Environmental impact of binary cycles -- 8.7 Equipment list for basic binary plants -- 8.7.1 Downwell pumps and motors -- 8.7.2 Brine supply system -- 8.7.3 Brine/working fluid heat exchangers -- 8.7.4 Turbine-generator and controls -- 8.7.5 Working fluid condenser, accumulator and storage system -- 8.7.6 Working fluid feed pump system -- 8.7.7 Heat rejection system -- 8.7.8 Back-up systems -- 8.7.9 Brine disposal system -- 8.7.10 Fire protection system (if working fluid is flammable) -- References -- Nomenclature for figures in Chapter 8 -- Problems -- 9. Advanced Geothermal Energy Conversion Systems -- 9.1 Introduction -- 9.2 Hybrid single-flash and double-flash systems -- 9.2.1 Integrated single- and double-flash plants -- 9.2.2 Combined single- and double-flash plants -- 9.3 Hybrid flash-binary systems -- 9.3.1 Combined flash-binary plants -- 9.3.2 Integrated flash-binary plants -- 9.4 Example: Integrated flash-binary hybrid system -- 9.5 Total-flow systems -- 9.5.1 Axial-flow impulse turbine -- 9.5.2 Rotary separator turbine -- 9.5.3 Helical screw expander -- 9.5.4 Conclusions -- 9.6 Hybrid fossil-geothermal systems -- 9.6.1 Fossil-superheat systems -- 9.6.2 Geothermal-preheat system -- 9.6.3 Geopressure-geothermal hybrid systems -- 9.7 Combined heat and power plants -- 9.8 Power plants for hypersaline brines -- 9.8.1 Flash-crystallizer/reactor-clarifier (FCRC) systems -- 9.8.2 pH modification (pH-Mod) systems -- 9.9 Solar-geothermal hybrid plants -- 9.9.1 Basic concept -- 9.9.2 Geothermal-augmented solar thermal plants -- 9.9.3 Solar-augmented binary plants.
9.9.4 Solar-augmented flash plants -- References -- Nomenclature for figures in Chapter 9 -- Problems -- 10. Exergy Analysis Applied to Geothermal Power Systems -- 10.1 Introduction -- 10.2 First Law for open, steady systems -- 10.3 Second Law for open, steady systems -- 10.4 Exergy -- 10.4.1 General concept -- 10.4.2 Exergy of fluid streams -- 10.4.3 Exergy for heat transfer -- 10.4.4 Exergy for work transfer -- 10.5 Exergy accounting for open, steady systems -- 10.6 Exergy efficiencies and applications to geothermal plants -- 10.6.1 Definitions of exergy efficiencies -- 10.6.2 Exergy efficiencies for turbines -- 10.6.3 Exergy efficiencies for heat exchangers -- 10.6.4 Exergy efficiencies for flash vessels -- 10.6.5 Exergy efficiencies for compressors -- 10.6.6 Exergy efficiencies for pumps -- 10.6.7 Exergy analysis for production wells -- References -- Problems -- 3. Geothermal Power Plant Case Studies -- 11. Larderello Dry-Steam Power Plants, Tuscany, Italy -- 11.1 History of development -- 11.2 Geology and reservoir characteristics -- 11.3 Power plants -- 11.3.1 Early power plants -- 11.3.2 Power plants of the modern era -- 11.3.2.1 Direct-intake, exhausting-to-atmosphere units -- 11.3.2.2 Direct-intake, condensing units -- 11.3.3 Recent power plant designs -- 11.4 Mitigation of environmental impact -- References -- Nomenclature for figures in Chapter 11 -- 12. The Geysers Dry-Steam Power Plants, Sonoma and Lake Counties, California, USA -- 12.1 History and early power plants -- 12.2 Geographic and geologic setting -- 12.3 Well drilling -- 12.4 Steam pipeline system -- 12.5 Power plants -- 12.5.1 Plant design under PG&E -- 12.5.2 SMUDGEO #1 plant design -- 12.5.3 Power plant operations under Calpine ownership -- 12.6 Recharging the reservoir -- 12.7 Toward sustainability -- References.
13. Cerro Prieto Power Station, Baja California Norte, Mexico.
Abstract:
Now in its 3e, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Important new chapters cover Hot Dry Rock, Enhanced Geothermal Systems, and Deep Hydrothermal Systems. New, international case studies provide practical, hands-on knowledge. Provides coverage of all aspects of the utilization of geothermal energy for power generation from fundamental scientific and engineering principles International case studies from real plants provide a unique compilation of hard-to-obtain data and experience Includes pivotal updates on advances in Hot Dry Rock, Enhanced Geothermal Systems, and Deep Hydrothermal Systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View