
Synthesis of Polymers : New Structures and Methods.
Title:
Synthesis of Polymers : New Structures and Methods.
Author:
Schlüter, Dieter A.
ISBN:
9783527644094
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (1203 pages)
Series:
Materials Science and Technology: a Comprehensive Treatment Ser.
Contents:
Synthesis of Polymers -- Contents -- List of Contributors -- 1 Foreword -- References -- 2 Polymer Synthesis: An Industrial Perspective -- 2.1 About this Chapter -- 2.2 Why? -- 2.3 Thesis: There Are No Limits to the Fantasy of a Synthetic Polymer Chemist -- 2.4 Antithesis: We May Be Able to Synthesize Millions of New Polymers-But Why Should We Do So? -- 2.5 Synthesis -- 2.5.1 Polymer Chemistry in Two Dimensions: Coatings -- 2.5.2 Polymer Chemistry Going Broad: Effects of Molar Mass Distribution -- 2.5.3 Polymer Chemistry Meets The Life Sciences: Polymeric Drug-Delivery Systems -- 2.6 Conclusions -- Acknowledgments -- 3 From Heterogeneous Ziegler-Natta to Homogeneous Single-Center Group 4 Organometallic Catalysts: A Primer on the Coordination Polymerization of Olefins -- 3.1 Introduction -- 3.2 Chapter Prospectus -- 3.3 Fundamentals of Coordination Polymerization -- 3.3.1 Ziegler-Natta Catalysts -- 3.3.1.1 First-Generation ZN Catalysts -- 3.3.1.2 Second-Generation ZN Catalysts -- 3.3.1.3 Third-Generation ZN Catalysts -- 3.3.1.4 Fourth-Generation ZN Catalysts -- 3.3.1.5 Fifth-Generation ZN Catalysts -- 3.3.2 Cossee-Arlman Mechanism -- 3.3.3 Stereocontrol -- 3.3.4 Regiocontrol -- 3.3.5 Chain Termination -- 3.3.6 Molecular Weight Distributions and Branching -- 3.4 Homogeneous Single-Center Coordination Polymerization -- 3.4.1 Molecular Catalysts -- 3.4.2 Metallocenes -- 3.4.3 Stereocontrol -- 3.4.4 Stereochemical Microstructure Analysis -- 3.4.5 Cocatalysts -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Cobalt-Mediated Radical Polymerization -- 4.1 Introduction -- 4.2 Mechanistic Considerations -- 4.3 Key Parameters of CMRP -- 4.3.1 The Cobalt Complex Structure -- 4.3.2 Polymerization Conditions -- 4.4 Macromolecular Engineering -- 4.5 Cobalt-Mediated Radical Coupling (CMRC) -- 4.6 Summary and Outlook -- Acknowledgments -- References.
5 Anionic Polymerization: Recent Advances -- 5.1 Background -- 5.2 Living Anionic Polymerization of Various Monomers -- 5.2.1 Styrene Derivatives -- 5.2.2 1,3-Diene Monomers -- 5.2.3 2- and 4-Vinylpyridines -- 5.3 (Meth)acrylate Derivatives -- 5.4 Acrylamide Derivatives -- 5.5 Cyclic Monomers -- 5.6 Other Monomers -- 5.7 Reaction of Living Anionic Polymers with Electrophiles: Synthesis of Chain-Functionalized Polymers -- 5.8 Synthesis of Architectural Polymers via Living Anionic Polymerization -- 5.8.1 Block Copolymers -- 5.8.2 Graft Copolymers -- 5.8.3 Star-Branched Polymers -- 5.8.4 Complex Architectural Polymers -- 5.9 Anionic Polymerization: Practical Aspects -- 5.10 Concluding Remarks -- References -- 6 Alkyne Metathesis Polymerization (ADIMET) and Macrocyclization (ADIMAC) -- 6.1 Introduction -- 6.2 Catalyst Development -- 6.3 Poly(Phenylene Ethynylene)s via ADIMET -- 6.4 ADIMAC-Acyclic Diyne Metathesis Macrocyclization -- 6.5 Conclusions -- References -- 7 The Synthesis of Conjugated Polythiophenes by Kumada Cross-Coupling -- 7.1 Introduction to Polythiophene -- 7.2 Kumada Cross-Coupling -- 7.3 Polythiophenes by Kumada Cross-Coupling -- 7.3.1 Initiation and Catalyst Transfer Propagation -- 7.3.2 Summary of Mechanistic Studies -- 7.3.3 Influence of the Catalyst on Regioregularity -- 7.3.4 Thiophene-Based Monomers -- 7.3.5 Non-Thiophene Monomers -- 7.3.6 End Group Modification -- 7.4 Copolymers -- 7.4.1 Random and Alternating Copolymers -- 7.4.2 Block Copolymers -- 7.5 Summary and Outlook -- References -- 8 ''Absolute'' Asymmetric Polymerization within Crystalline Architectures: Relevance to the Origin of Homochirality -- 8.1 Introduction -- 8.2 ''Through-Space'' Asymmetric Polymerization in Inclusion Complexes and Liquid Crystals -- 8.3 Isotactic Oligomers Generated within Monolayers at the Air-Water Interface.
8.4 ''Absolute'' Asymmetric Polymerization in 3-D Crystals -- 8.4.1 The Planning and Materialization of an ''Absolute'' Asymmetric Synthesis of Polymers -- 8.4.2 Attempted Amplification of Homochirality -- 8.5 Generation of Isotactic Oligopeptides via Polymerization in Racemic Crystals -- 8.5.1 (RS)-PheNCA -- 8.5.2 (RS)-ValNCA and (RS)-LeuNCA -- 8.6 Isotactic Oligopeptides from the Polymerization of Racemic ValNCA or LeuNCA in Aqueous Solution -- 8.7 Racemic ß-Sheets in the Polymerization of a-Amino-Acids in Aqueous Solutions: Homochiral Oligopeptides and Copeptides via the ''Ehler-Orgel'' Reaction -- 8.8 Isotactic Oligopeptides from Racemic Thioesters of DL-Leu and DL-Val -- 8.9 Conclusions -- References -- 9 Synthesis of Abiotic Foldamers -- 9.1 Introduction -- 9.2 Phenylene Ethynylene Foldamers -- 9.2.1 Backbone Folding: Design Principle -- 9.2.2 General Synthesis -- 9.2.3 Representative Examples -- 9.2.3.1 Oligo(meta-Phenylene Ethynylene)s (OmPEs) -- 9.2.4 Oligo(ortho-Phenylene Ethynylene)s (OoPEs) -- 9.3 Helical Aromatic Amides -- 9.3.1 Backbone Folding: Design Principle -- 9.3.2 General Synthesis -- 9.3.3 Representative Examples -- 9.3.3.1 Oligoaryl-Dicarboxamides -- 9.3.3.2 Oligoquinoline-Dicarboxamides -- 9.3.3.3 Oligoanthranilamides -- 9.3.3.4 Oligopyridine-Dicarboxamides -- 9.4 Helical Aromatic Ureas -- 9.4.1 Backbone Folding: Design Principle -- 9.4.2 General Synthesis -- 9.4.3 Representative Examples -- 9.4.3.1 Oligoheterocyclic Ureas -- 9.4.3.2 Oligoaryl Ureas -- 9.4.3.3 Oligobenzoyl Ureas -- 9.5 Helical Aromatic Hydrazides -- 9.5.1 Backbone Folding: Design Principle -- 9.5.2 Synthesis -- 9.6 Heterocyclic Foldamers -- 9.6.1 Backbone Folding: Design Principle -- 9.6.2 Representative Examples -- 9.6.2.1 Oligopyridine-Pyrimidines -- 9.6.2.2 Oligopyridine-Pyridazines -- 9.6.2.3 Oligonaphthyridine-Pyrimidines.
9.6.2.4 1,4-Disubstituted-1,2,3-Triazoles -- 9.6.2.5 Oligoindoles -- 9.7 Conclusions -- Abbreviations -- References -- 10 Cylindrical Polymer Brushes -- 10.1 Introduction -- 10.2 Synthesis of CPBs -- 10.2.1 Grafting-Through Strategy -- 10.2.1.1 Homopolymerization of Macromonomers -- 10.2.1.2 Copolymerization by Grafting-Through -- 10.2.2 Grafting-Onto Strategy -- 10.2.2.1 Side-Chain Attachment by Nucleophilic Substitution -- 10.2.2.2 Side-Chain Attachment by ''Click'' Chemistry -- 10.2.3 Grafting-From Strategy -- 10.2.3.1 Polyinitiator Backbone -- 10.2.4 Side-Chain Composition -- 10.2.4.1 Homopolymer Side Chains -- 10.2.4.2 Core-Shell Diblock Copolymer Side Chains -- 10.2.4.3 Other Copolymer Side Chains -- 10.2.5 Combined Grafting Approach -- 10.2.5.1 Grafting-Onto + Grafting-From -- 10.2.5.2 Grafting-Through + Grafting-From -- 10.2.6 Block Copolymer Self-Assembly -- 10.2.6.1 Selective Crosslinking in Bulk -- 10.2.6.2 Core Crystallization in Solution -- 10.2.6.3 Comparison with Molecular Brushes -- 10.3 Properties of CPBs -- 10.3.1 Solution Properties -- 10.3.2 Properties in the Bulk -- 10.3.3 CPBs in Thin Films on Different Substrates -- 10.4 CPBs as a Template for 1-D Inorganic/Hybrid Nanostructures -- 10.4.1 Core-Shell CPBs as a Template -- 10.4.2 Polymeric Cylinders from Self-Assembly as a Template -- 10.5 Closing Remarks -- References -- 11 Block Copolymers by Multi-Mode Polymerizations -- 11.1 Introduction -- 11.2 Coupling Methods -- 11.3 Transformation Reactions -- 11.3.1 Transformations Involving Anionic and Controlled Radical Polymerization -- 11.3.2 Transformations Involving Cationic and Controlled Radical Polymerization -- 11.3.3 Transformations Involving Anionic and Cationic Polymerizations -- 11.3.4 Transformations Involving Metathesis Polymerization -- 11.3.5 Transformations Involving Ziegler-Natta Polymerization.
11.3.6 Transformations Involving the Same Polymerization Mechanism -- 11.4 Dual Polymerizations -- 11.5 Conclusions -- List of Symbols and Abbreviations -- References -- 12 Advances in the Synthesis of Cyclic Polymers -- 12.1 Introduction -- 12.2 Bimolecular Approach -- 12.3 Unimolecular Approach -- 12.3.1 Homodifunctional Approach -- 12.3.2 Heterodifunctional Approach -- 12.4 Ring-Expansion Approach -- 12.5 Conclusions -- References -- 13 Cyclodehydrogenation in the Synthesis of Graphene-Type Molecules -- 13.1 Introduction -- 13.2 Lewis Acid-Catalyzed Oxidative Cyclodehydrogenation (Scholl Reaction) -- 13.2.1 Hexa-peri-Hexabenzocoronenes (HBCs) and Related Systems -- 13.2.2 Expanded PAHs: Nanographenes and Graphene Nanoribbons -- 13.3 Base-Induced Cyclodehydrogenation -- 13.4 Oxidative Photocyclization (Mallory Reaction) -- 13.5 Surface-Assisted Cyclodehydrogenation -- 13.6 Conclusions -- References -- 14 Polymerizations in Micro-Reactors -- 14.1 Introduction -- 14.1.1 The Micro-Reactor -- 14.1.2 Droplet Formation -- 14.2 Polymerization Reactions with Excess Heat Production -- 14.2.1 Step Growth Polymerization -- 14.2.2 Chain Growth Polymerization -- 14.2.3 Anionic Polymerization -- 14.2.4 Cationic Polymerization -- 14.2.5 Radical Polymerization -- 14.2.5.1 Solution Free Radical Polymerization -- 14.2.5.2 Controlled Radical Polymerization -- 14.3 Formation of Uniform Particles -- 14.3.1 Particle Formation by Precipitation/Dispersion Polymerization -- 14.3.2 Continuous Production of Monodisperse Polymer Particles -- 14.4 Scaling-Up -- 14.5 Conclusions -- References -- 15 Miniemulsion Polymerization -- 15.1 Introduction -- 15.2 Radical Polymerization -- 15.3 Controlled Radical Polymerizations -- 15.4 Radiation-Induced Polymerization -- 15.5 Metal-Catalyzed Polymerizations -- 15.6 Ionic Polymerizations -- 15.7 Polyaddition -- 15.8 Polycondensation.
15.9 Enzymatic Polymerization.
Abstract:
Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials. Due to the extraordinary range of properties accessible, polymers have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins on the other hand. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways. This book brings together the "Who is who" of polymer science to give the readers an overview of the large field of polymer synthesis. It is a one-stop reference and a must-have for all Chemists, Polymer Chemists, Chemists in Industry, and Materials Scientists.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View