Cover image for Physical Basis of Plasticity in Solids.
Physical Basis of Plasticity in Solids.
Title:
Physical Basis of Plasticity in Solids.
Author:
Toledano, Jean-Claude.
ISBN:
9789814374064
Personal Author:
Physical Description:
1 online resource (280 pages)
Contents:
Contents -- Preface -- 1. Introduction -- 1.1 Plasticity -- 1.1.1 Mechanical properties of solids -- 1.1.2 Microscopic mechanisms -- Elastic behaviour -- Plastic behaviour -- 1.2 Organization and contents of the chapters -- 1.3 General References -- 2. The structure of crystalline solids -- 2.1 Introduction -- 2.2 Crystal geometry -- 2.2.1 Ideal crystal -- 2.3 Bravais lattices -- 2.3.1 Definition -- 2.3.2 Properties -- Non-unicity of the generating translations -- Lattice planes and rows -- Symmetry of the Bravais lattice -- Constraints on the rotation angles -- 2.4 Unit cells -- 2.4.1 Primitive unit cells -- 2.4.2 Conventional unit cells -- 2.4.3 Classification of the Bravais lattices. Cubic lattices -- a) Simple cubic lattice (abbreviated as SC) -- b) Body centered cubic lattice (abbreviated as BCC) -- c) Face centered cubic lattice (abbreviated as FCC) -- 2.5 Examples of crystal structures -- 2.5.1 Simple monoatomic structure packings -- Cubic close-packing -- Hexagonal close-packing -- Relationship between close-packings -- Body centered cubic packing -- 2.5.2 Physical realizations in metals -- Metallic alloys -- 2.5.3 Simple covalent structures -- 2.6 Non-crystalline solids -- 3. Mechanics of deformable solids -- 3.1 Introduction -- 3.2 Fundamental tensors -- 3.2.1 Strain and stress -- 3.2.2 Stiffness -- 3.3 Coordinate changes -- 3.4 Stiffness tensor and crystal symmetry -- 3.4.1 General constraints -- 3.4.2 Crystal symmetry -- 3.4.3 Mathematical transformation of tensors -- 3.5 Isotropic solids -- 3.5.1 Stiffness tensor -- 3.5.2 Basic equations -- 4. Vacancies, an example of point defects in crystals -- 4.1 Classification of defects in crystals -- 4.2 Stability of point-defects in solids -- 4.2.1 Statistical equilibrium -- 4.2.2 Concentration of defects at thermal equilibrium -- 4.3 Formation of vacancies -- 4.3.1 Formation energy.

Description of the elastic model -- Displacement field -- Induced strain and stress -- Elastic energy of a vacancy -- Energy of a vacancy in a metal -- 4.3.2 Random displacement of vacancies, diffusion -- Frequency of jumps -- Average free path of the vacancies -- Macroscopic diffusion of vacancies -- Self-diffusion of atoms -- Other types of point defects -- 5. The geometry of dislocations -- 5.1 Introduction -- 5.2 Straight edge dislocation -- 5.2.1 Hypothetical procedures of formation -- Addition or substraction of a half atomic plane -- Formation by partial slipping -- Amplitude of the slipping and primitive translations -- General definition of a dislocation -- 5.2.2 Burgers circuit and Burgers vector -- Burgers circuit -- Sign of the Burgers vector of an edge dislocation -- Physical meaning of the Burgers vector -- 5.2.3 Edge dislocation loops -- Rectangular loop -- Dislocation-loop of arbitrary shape -- 5.3 Other types of dislocations -- 5.3.1 Screw dislocation -- Formation by slipping -- Burgers vector -- 5.3.2 Mixed dislocation-loops -- 5.3.3 General properties of the Burgers vector -- 5.4 Volterra process of formation -- 5.4.1 Edge and screw dislocations -- Edge-dislocation formed by slipping -- Edge dislocation generated by adding or removing matter -- Screw dislocation -- 5.4.2 General case -- 5.5 Observation of dislocations -- 5.5.1 Reflexion of electrons by a crystal -- Bragg rule -- 5.5.2 How can a dislocation be observed? -- Deformation of lattice planes by a dislocation -- Imaging a dislocation -- Determination of the Burgers vector -- 5.5.3 Lattice planes and reciprocal lattice -- Reciprocal lattice -- Vector formulation of the Bragg rule -- 5.5.4 Diffraction of electron beams -- Selection of a given diffraction direction -- 6. Strain field of dislocations -- 6.1 Introduction -- 6.2 Strain and stress fields.

6.2.1 Screw dislocation -- Displacement field -- Strain and stress fields -- Elastic energy density -- Instability of dislocations -- 6.2.2 Straight edge dislocation -- Displacement field -- Strain and stress fields -- Elastic energy -- 6.2.3 Mixed straight dislocation -- 6.2.4 Elastic energy of a dislocation loop -- 6.3 Action of a stress on a dislocation -- 6.3.1 Effective force applied to a dislocation -- 6.3.2 Peach and Koehler formula -- 6.4 Line tension of a dislocation -- 6.5 Interaction between dislocations -- 6.5.1 Qualitative study -- Two edge-dislocations in the same glide plane -- Two parallel screw-dislocations -- One screw-dislocation and one, parallel, edge-dislocation -- 6.5.2 Quantitative study -- Forces between parallel screw dislocations -- Forces between parallel edge-dislocations -- Parallel dislocations of mixed types -- Non-parallel dislocations -- 6.6 Interaction between a dislocation and a vacancy -- 7. Interactions with the lattice -- 7.1 Introduction -- 7.2 Core structure of an edge dislocation -- 7.2.1 Lattice planes coordinates -- 7.2.2 Components of the core energy -- Elastic component of the core excess-energy -- Misfit across the glide plane -- 7.2.3 Determination of the core width -- 7.3 Peierls-Nabarro stress -- 7.3.1 Gliding of a dislocation -- 7.3.2 Principle of calculation of the Peierls-Nabarro stress -- 7.4 Dissociation of the dislocation core -- 8. Microscopic mechanism of plasticity -- 8.1 Introduction -- 8.2 Plastic deformation and local shear -- 8.2.1 Amplitude of the slips -- 8.2.2 Resolved shear stress -- 8.2.3 Crystallographic characteristics of the slips -- 8.3 Elementary slip and yield strength -- 8.3.1 Edge dislocations -- 8.3.2 Screw dislocations -- 8.3.3 Upper limit of the yield strength -- 8.3.4 Slip assisted by dislocation motion -- 8.3.5 Number of dislocations -- 8.4 Dislocation sources.

8.4.1 Change of configuration of dislocations -- 8.4.2 Frank-Read source -- 8.4.3 Spiral source -- 8.5 Dislocation glide and climb -- 8.6 Hardening -- 8.6.1 Pinning dislocations -- Interaction between two dislocations -- Pinning by a junction -- Pinning by the dislocation "forest" -- Pinning by a jog -- Pinning by a grain boundary -- 8.6.2 Hardening mechanism -- 8.6.3 Unpinning of the motion of dislocations -- Cross slip -- Amplification of the external stress -- 8.7 Effect of temperature -- 8.8 Deformation rate -- 8.8.1 Orowan formula -- 8.8.2 Dislocation velocity -- 8.9 Origin of the diversity of plastic behaviours -- 8.9.1 Easy-glide planes -- glide systems -- 8.9.2 Metals with an FCC or HC structure -- Metals with the hexagonal compact structure -- Metals with a cubic compact structure -- 8.9.3 Other solids -- Crystalline materials -- Glasses and amorphous alloys -- Quasicrystals: an intermediate behaviour -- Appendix A Exercises -- A.1 Structure of crystalline solids (chap. 2) -- A.2 Dislocations, Burgers vector (chap. 5) -- A.3 Deformations and forces (chap. 6) -- A.4 Core of a dislocation (chap. 7) -- A.5 Mechanism of plasticity (chap. 8) -- Appendix B Solutions to Exercises -- Index.
Abstract:
This book introduces the physical mechanism of the plastic deformation of solids, which relies essentially on the occurrence and motion of dislocations. These are linear defects, specific of crystalline solids whose motion under external stresses explains the relative ease by which solids (metals in particular) can be deformed in order to give them desired shapes. The objective is to introduce the topic to undergraduate students, restricting to the main ideas and showing their relevance in interpreting phenomena well known to everyone (e.g. why are certain metals harder than others?), and finally training the students in the practice of calculating the simplest properties of dislocations.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:

Electronic Access:
Click to View
Holds: Copies: