Cover image for Operator Calculus on Graphs : Theory and Applications in Computer Science.
Operator Calculus on Graphs : Theory and Applications in Computer Science.
Title:
Operator Calculus on Graphs : Theory and Applications in Computer Science.
Author:
Schott, Rene.
ISBN:
9781848168770
Personal Author:
Physical Description:
1 online resource (428 pages)
Contents:
Contents -- Preface -- Acknowledgments -- Combinatorial Algebras and Their Properties -- 1. Introduction -- 1.1 Notational Preliminaries -- 2. Combinatorial Algebra -- 2.1 Six Group and Semigroup Algebras -- 2.1.1 The group of blades Bp,q -- 2.1.1.1 Involutions -- 2.1.1.2 The n-dimensional hypercube Qn -- 2.1.2 The abelian blade group Bp,q sym -- 2.1.3 The null blade semigroup -- 2.1.4 The abelian null blade semigroup sym -- 2.1.5 The semigroup of idempotent blades idem -- 2.1.6 The path semigroup n -- 2.1.7 Summary -- 2.1.7.1 Algebras I-IV -- 2.1.7.2 Algebra V -- 2.1.7.3 Algebra VI -- 2.2 Clifford and Grassmann Algebras -- 2.2.1 Grassmann (exterior) algebras -- 2.2.2 Clifford algebras -- 2.2.3 Operator calculus on Clifford algebras -- 2.3 The Symmetric Clifford Algebra sym -- 2.4 The Idempotent-Generated Algebra idem -- 2.5 The n-Particle Zeon Algebra nil -- 2.6 Generalized Zeon Algebras -- 3. Norm Inequalities on Clifford Algebras -- 3.1 Norms on C p -- q -- 3.2 Generating Functions -- 3.3 Clifford Matrices and the Clifford-Frobenius Norm -- 3.4 Powers of Clifford Matrices -- Combinatorics and Graph Theory -- 4. Specialized Adjacency Matrices -- 4.1 Essential Graph Theory -- 4.2 Clifford Adjacency Matrices -- 4.3 Nilpotent Adjacency Matrices -- 4.3.1 Euler circuits -- 4.3.2 Conditional branching -- 4.3.3 Time-homogeneous random walks on finite graphs -- 5. Random Graphs -- 5.1 Preliminaries -- 5.2 Cycles in Random Graphs -- 5.3 Convergence of Moments -- 6. Graph Theory and Quantum Probability -- 6.1 Concepts -- 6.1.1 Operators as random variables -- 6.1.2 Operators as adjacency matrices -- 6.2 From Graphs to Quantum Random Variables -- 6.2.1 Nilpotent adjacency operators in infinite spaces -- 6.2.2 Decomposition of nilpotent adjacency operators -- 6.3 Connected Components in Graph Processes -- 6.3.1 Algebraic preliminaries.

6.3.2 Connected components -- 6.3.2.1 (k, d)-components -- 6.3.3 Second quantization of graph processes -- 7. Geometric Graph Processes -- 7.1 Preliminaries -- 7.2 Dynamic Graph Processes -- 7.2.1 Vertex degrees in Gn -- 7.2.2 Energy and Laplacian energy of geometric graphs -- 7.2.3 Convergence conditions and a limit theorem -- 7.3 Time-Homogeneous Walks on Random Geometric Graphs -- Probability on Algebraic Structures -- 8. Time-Homogeneous Random Walks -- 8.1 sym and Random Walks on Hypercubes -- 8.2 Multiplicative Walks on C p,q -- 8.2.1 Walks on directed hypercubes -- 8.2.2 Random walks on directed hypercubes with loops -- 8.2.3 Properties of multiplicative walks -- 8.3 Induced Additive Walks on C p,q -- 8.3.1 Variance of N -- 8.3.2 Variance of -- 8.3.3 Central limit theorems -- 9. Dynamic Walks in Clifford Algebras -- 9.1 Preliminaries -- 9.2 Expectation -- 9.3 Limit Theorems -- 9.3.1 Conditions for convergence -- 9.3.2 Induced additive walks -- 9.3.3 Central limit theorem -- 10. Iterated Stochastic Integrals -- 10.1 Preliminaries -- 10.2 Stochastic Integrals in -- 10.3 Graph-Theoretic Iterated Stochastic Integrals -- 10.3.1 Functions on partitions -- 10.3.2 The Clifford evolution matrix -- 10.3.3 Orthogonal polynomials -- 11. Partition-Dependent Stochastic Measures -- 11.1 Preliminaries -- 11.2 Cycle Covers, Independent Sets, and Partitions -- 11.3 Computations on Lattices of Partitions -- 11.3.1 Computations on lattice segments -- 11.3.2 Computations on restricted lattice segments -- 11.4 Free Cumulants -- Operator Calculus -- 12. Appell Systems in Clifford Algebras -- 12.1 Essential Background -- 12.1.1 Appell systems -- 12.1.2 Clifford algebras -- 12.2 Operator Calculus on Clifford Algebras -- 12.3 Generalized Raising and Lowering Operators -- 12.4 Clifford Appell Systems -- 12.4.1 Heterogeneous Clifford Appell systems.

12.4.2 Role of blade factorization in the construction of Appell systems -- 12.5 Fermion Algebras and the Fermion Field -- 13. Operator Homology and Cohomology -- 13.1 Introduction -- 13.2 Clifford Homology and Cohomology -- 13.3 Homology and Lowering Operators -- 13.4 Cohomology and Raising Operators -- 13.5 Matrix Representations of Lowering and Raising Operators -- 13.6 Graphs of Raising and Lowering Operators -- 13.7 Operators as Quantum Random Variables -- Symbolic Computations -- 14. Multivector-Level Complexity -- 14.1 Preliminaries -- 14.2 Graph Problems -- 14.2.1 Cycles and paths -- 14.2.2 Edge-disjoint cycle decompositions of graphs -- 14.3 A Matrix-Free Approach to Representing Graphs -- 14.4 Other Combinatorial Applications -- 14.4.1 Computing the permanent -- 14.4.2 The set packing and set covering problems -- 15. Blade-Level Complexity -- 15.1 Blade Operations -- 15.2 Counting Cycles -- 15.2.1 Cycles of fixed length -- 15.2.2 Remarks on space complexity -- 15.3 Further Remarks on Complexity -- 16. Operator Calculus Approach to Minimal Path Problems -- 16.1 Path-Identfying Nilpotent Adjacency Matrices -- 16.2 Operator Calculus Approach to Multi-Constrained Paths -- 16.2.1 Feasible and optimal paths in m-weighted graphs -- 16.2.2 The dynamic multi-constrained path problem -- 16.3 Minimal Path Algorithms -- 16.4 Application: Precomputed Routing in a Store-and- Forward Satellite Constellation -- 16.4.1 Operator calculus implementation -- 16.4.2 The results -- 17. Symbolic Computations with Mathematica -- 17.1 CliffMath' : Computations in Clifford Algebras of Arbitrary Signature -- 17.1.1 CliffMath' procedures -- 17.1.2 Examples -- 17.2 CliffSymNil': A Companion Package -- 17.2.1 CliffSymNil' procedures -- 17.2.2 Examples -- 17.3 CliffOC': Operator Calculus on Clifford Algebras -- 17.3.1 CliffOC' procedures -- 17.3.2 Examples.

17.4 "Fast Zeon" Implementation -- Bibliography -- Index.
Abstract:
This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science. Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web. Examples are put forward in Mathematica throughout the book, together with packages for performing symbolic computations.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: