Cover image for Vignettes in Gravitation and Cosmology.
Vignettes in Gravitation and Cosmology.
Title:
Vignettes in Gravitation and Cosmology.
Author:
Sriramkumar, L.
ISBN:
9789814322072
Personal Author:
Physical Description:
1 online resource (284 pages)
Contents:
Contents -- Preface -- 1. Non-linear gravitational clustering in an expanding universe Jasjeet Singh Bagla -- 1.1 Introduction -- 1.2 Gravitational clustering -- 1.2.1 Linear approximation -- 1.2.2 Quasi-linear approximations -- 1.3 In search of universalities -- 1.3.1 Mode coupling: Effect of small scale perturbations -- 1.3.2 Mode coupling: Effect of large scale perturbations -- 1.4 Conclusions -- Acknowledgments -- References -- 2. Dark ages and cosmic reionization Tirthankar Roy Choudhury -- 2.1 Introduction -- 2.2 Theoretical formalism -- 2.2.1 Cosmological radiation transfer -- 2.2.2 Post-reionization epoch -- 2.2.2.1 Resonant Lyman series absorption -- 2.2.2.2 Continuum absorption -- 2.2.3 Pre-overlap epoch -- 2.2.4 Reionization of the inhomogeneous IGM -- 2.3 Modelling of reionization -- 2.3.1 Reionization sources -- 2.3.1.1 Mass function of collapsed haloes -- 2.3.1.2 Star formation rate -- 2.3.1.3 Production of ionizing photons -- 2.3.1.4 Feedback processes -- 2.3.1.5 Quasars -- 2.3.2 Illustration of a semi-analytical model -- 2.4 Current status and future -- 2.4.1 Simulations -- 2.4.2 Various observational probes -- 2.4.2.1 Absorption spectra of high redshift sources -- 2.4.2.2 CMBR observations -- 2.4.2.3 Ly emitters -- 2.4.2.4 Sources of reionization -- 2.4.2.5 21cm observations -- 2.5 Concluding remarks -- References -- 3. Probing fundamental constant evolution with redshifted spectral lines Nissim Kanekar -- 3.1 Introduction -- 3.2 Redshifted spectral lines: Background -- 3.3 Optical techniques -- 3.3.1 The alkali doublet method -- 3.3.2 The many-multiplet method -- 3.3.3 Molecular hydrogen lines -- 3.4 "Radio" techniques -- 3.4.1 Radio-optical comparisons -- 3.4.2 Radio comparisons -- 3.4.3 Ammonia inversion transitions -- 3.5 "Conjugate" Satellite OH lines -- 3.6 Results from the different techniques -- 3.7 Future studies.

3.8 Summary -- 3.9 Acknowledgments -- References -- 4. Averaging the inhomogeneous universe Aseem Paranjape -- 4.1 Introduction -- 4.2 History of the averaging problem -- 4.2.1 Noonan's averaging scheme -- 4.2.2 Futamase's scheme -- 4.2.3 Boersma's scheme -- 4.2.4 Kasai's scheme -- 4.2.5 Conventional wisdom and controversy -- 4.3 Buchert's spatial averaging of scalars -- 4.4 Zalaletdinov's Macroscopic Gravity (MG) -- 4.4.1 A spatial averaging limit -- 4.5 Backreaction in cosmological perturbation theory -- 4.5.1 Lessons from linear theory -- 4.5.2 The nonlinear regime -- 4.5.2.1 Dimensional arguments, and why they fail -- 4.5.3 Calculations in an exact model -- 4.6 Conclusions -- 4.6.1 The "Special Observer" assumption -- References -- 5. Signals of cosmic magnetic fields from the cosmic microwave background radiation T. R. Seshadri -- 5.1 Introduction -- 5.2 Origin of CMBR -- 5.2.1 Homogeneous universe -- 5.3 Origin of CMBR and the homogeneity of the universe -- 5.4 Finer features of the CMBR: A brief introduction -- 5.4.1 Temperature anisotropy -- 5.5 Origin of temperature anisotropy in the CMBR -- 5.6 Characterizing the nature of CMBR polarization anisotropy -- 5.7 Origin of CMBR polarization anisotropy -- 5.8 Cosmic magnetic fields -- 5.9 Polarization in CMBR due to magnetic fields -- 5.10 Non-Gaussianity from magnetic fields -- References -- 6. Quantum corrections to Bekenstein-Hawking entropy S. Shankaranarayanan -- 6.1 Paddy -- 6.2 Prologue -- 6.3 Entropy and the choice of system states -- 6.3.1 Thought experiment by von Neumann -- 6.4 An intriguing feature of black hole entropy -- 6.5 Quantum corrections -- 6.6 Quantum entanglement -- 6.6.1 Relevance of entanglement for black hole entropy -- 6.6.2 Rapid review of entanglement -- 6.7 Entanglement entropy: Assumptions and setup -- 6.8 Entanglement entropy: Microcanonical.

6.9 Entanglement entropy: Canonical -- 6.10 Conclusions and discussion -- 6.11 Acknowledgments -- 6.12 Appendix -- References -- 7. Quantum measurement and quantum gravity: many worlds or collapse of the wave function? T. P. Singh -- 7.1 The quantum measurement problem -- 7.1.1 First explanation: The many-worlds interpretation -- 7.1.2 Second explanation: Collapse of the wave-function -- 7.1.3 Goal of the present paper -- 7.2 A toy model for non-linear quantum mechanics and collapse of the wave-function -- 7.2.1 Introduction -- 7.2.2 The toy model -- 7.2.3 The Doebner-Goldin equation -- 7.3 Quantum gravity suggests that quantum mechanics is nonlinear -- 7.3.1 Outline of the approach -- 7.3.2 Why quantum mechanics without classical spacetime? -- 7.3.3 A reformulation based on noncommutative differential geometry -- 7.3.4 Quantum Minkowski spacetime -- 7.3.5 Including self-gravity -- 7.3.6 A non-linear Schrodinger equation -- 7.3.7 Explaining quantum measurement -- 7.3.8 Ideas for an experimental test of the model -- 7.4 Other models for collapse of the wave-function -- 7.4.1 Models that do not involve gravity -- 7.4.2 Models that involve gravity -- 7.5 Discussion -- Acknowledgements -- References -- 8. On the generation and evolution of perturbations during inflation and reheating L. Sriramkumar -- 8.1 Inflation and reheating -- 8.2 Inflating the universe -- 8.2.1 Drawing the modes back inside the Hubble radius -- 8.2.2 Propelling accelerated expansion with scalar fields -- 8.2.3 Slow roll inflation -- 8.2.4 Solutions in the slow roll approximation -- 8.3 Gauge invariant, linear, perturbation theory -- 8.3.1 Scalar perturbations -- 8.3.1.1 Equations of motion governing the scalar perturbations -- 8.3.1.2 A conserved quantity at super-Hubble scales -- 8.3.1.3 Evolution of the Bardeen potential at super-Hubble scales -- 8.3.2 Vector perturbations.

8.3.3 Tensor perturbations -- 8.4 Generation of perturbations during inflation -- 8.4.1 Equation of motion for the curvature perturbation -- 8.4.2 Quantization of the perturbations and the definition of the power spectra -- 8.4.3 The scalar and tensor spectra in slow roll inflation -- 8.5 Reheating the universe -- 8.5.1 Behavior of the scalar field at the end of inflation -- 8.5.2 Transferring the energy from the inflation to radiation -- 8.6 Evolution of perturbations during reheating -- 8.6.1 Equations governing the evolution of perturbations -- 8.6.2 Effects of reheating on the perturbations -- 8.7 Non-trivial post-inflationary dynamics: Modulated reheating and the curvaton scenarios -- 8.7.1 Modulated or the inhomogeneous reheating scenario -- 8.7.2 The curvaton scenario -- 8.8 Summary and discussion -- Acknowledgements -- References -- 9. Patterns in neural processing Sunu Engineer -- 9.1 Introduction -- 9.2 The brain-the neuron -- 9.3 The model -- 9.4 Evolution of the neural system -- 9.5 Conclusions -- References -- Articles co-authored by the contributors with T. Padmanabhan -- Index.
Abstract:
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: