Cover image for Biopharmaceutical Production Technology.
Biopharmaceutical Production Technology.
Title:
Biopharmaceutical Production Technology.
Author:
Subramanian, Ganapathy.
ISBN:
9783527653126
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (915 pages)
Contents:
Biopharmaceutical Production Technology -- Contents -- Preface -- List of Contributors -- Part One: Upstream Technologies -- 1: Strategies for Plasmid DNA Production in Escherichia coli -- 1.1 Introduction -- 1.2 Requirements for a Plasmid DNA Production Process -- 1.3 Structure of a DNA Vaccine Production Process -- 1.4 Choice of Antigen -- 1.5 Vector DNA Construct -- 1.5.1 Popular Amplification Systems -- 1.5.2 Intrinsic Factors -- 1.6 Host Strains -- 1.6.1 endA and recA -- 1.6.2 relA -- 1.6.3 Nucleoside Pathway -- 1.6.4 gyrA -- 1.6.5 Strains for Production Processes -- 1.7 Cultivation Medium and Process Conditions -- 1.8 Lysis/Extraction of Plasmid DNA -- 1.9 Purification -- 1.9.1 Clarification of the Lysate and Intermediate Purification -- 1.9.2 Purification by Chromatography -- 1.9.2.1 Anion-Exchange Chromatography -- 1.9.2.2 Hydrophobic Interaction Chromatography -- 1.9.2.3 Gel Filtration -- 1.9.2.4 Membrane Chromatography -- 1.9.2.5 Chromatography on Porous Monolithic Supports -- 1.10 Formulation -- 1.10.1 Lipoplexes -- 1.10.2 Polyplexes -- 1.10.3 Inorganic Nanoparticles -- 1.11 Conclusions -- References -- 2: Advances in Protein Production Technologies -- 2.1 Introduction -- 2.2 Glycoengineering for Homogenous Human-Like Glycoproteins -- 2.3 Bacteria as Protein Factories -- 2.4 Mammalian Cell Technology -- 2.5 Yeast Protein Production -- 2.6 Baculovirus-Insect Cell Technology -- 2.7 Transgenic Animal Protein Production -- 2.8 Plant Molecular Farming -- 2.9 Cell-Free Protein Production -- 2.10 Future Prospects -- References -- Part Two: Protein Recovery -- 3: Releasing Biopharmaceutical Products from Cells -- 3.1 Introduction -- 3.2 Cell Structure and Strategies for Disruption -- 3.3 Cell Mechanical Strength -- 3.4 Homogenization -- 3.4.1 Mechanisms -- 3.4.2 Modeling -- 3.5 Bead Milling -- 3.5.1 Modeling -- 3.6 Chemical Treatment.

3.7 Cellular Debris -- 3.7.1 Modeling -- 3.8 Conclusions -- References -- 4: Continuous Chromatography (Multicolumn Countercurrent Solvent Gradient Purification) for Protein Purification -- 4.1 Introduction -- 4.1.1 Overview of the Biopharmaceutical Market -- 4.1.2 Overview of Purification of Biopharmaceuticals -- 4.1.3 Introduction to Continuous Chromatographic Processes -- 4.2 Overview of Continuous Chromatographic Processes -- 4.2.1 SMB and Its Derivatives -- 4.2.1.1 Applications of SMB in the Pharmaceutical Industry: Small Molecules -- 4.2.1.2 Limitations of SMB -- 4.2.2 MCSGP Goes Beyond SMB and Makes Continuous Chromatography Possible for Bioseparations -- 4.3 Principles of MCSGP -- 4.3.1 Tasks in Batch Chromatogram -- 4.3.1.1 Generic Purification Problem -- 4.3.2 Six-Column MCSGP Principle -- 4.3.3 Three-Column MCSGP Principle -- 4.3.4 Four-Column MCSGP with Separate CIP Position -- 4.3.5 Four-Column MCSGP with a Separate Position for Continuous Feed -- 4.3.6 MCSGP Process for Separations with More Than Three Fractions -- 4.4 Application Examples of MCSGP -- 4.4.1 Polypeptide Purification with Reversed-Phase Chromatography -- 4.4.2 mAb Charge Variant Separation -- 4.4.3 mAb Capture and Polish from Supernatant -- 4.4.4 Size-Exclusion Chromatographic Purification with MCSGP -- 4.5 Enabling Features and Economic Impact of MCSGP -- 4.6 Annex 1: Chromatographic Process Decision Tree -- References -- 5: Virus-Like Particle Bioprocessing -- 5.1 Introduction -- 5.2 Upstream Processing -- 5.2.1 Intracellular Expression and Assembly -- 5.2.2 Cell-Free Approaches -- 5.3 Downstream Processing -- 5.3.1 Gardasil Downstream Processing -- 5.3.2 VLP Aggregation -- 5.3.3 Purification of Cell-Assembled VLPs -- 5.3.4 Purification for In Vitro Assembly -- 5.4 Analysis -- 5.5 Conclusions -- 5.6 Nomenclature -- Acknowledgments -- References.

6: Therapeutic Protein Stability and Formulation -- 6.1 Introduction -- 6.2 Protein Stability -- 6.2.1 Structural Stability -- 6.2.2 Thermal Stability -- 6.2.3 Chaotropes, Solvents, and pH -- 6.2.4 Shear -- 6.2.5 Freezing -- 6.2.6 Drying -- 6.2.7 Air-Liquid and Solid-Liquid Interfaces -- 6.2.8 Chemical Stability -- 6.2.9 Precipitation, Aggregation, and Fibril Formation -- 6.2.10 Leachables -- 6.3 Formulation and Materials -- 6.3.1 Liquid Formulations -- 6.3.2 pH -- 6.3.3 Amino Acids and Other Organic Buffers -- 6.3.4 Sugars and Polyols -- 6.3.5 Salts -- 6.3.6 Surfactants -- 6.3.7 Specific Binding -- 6.3.8 Chelating Agents -- 6.3.9 Redox Potential -- 6.3.10 Containers and Closures -- 6.3.11 Frozen Formulations -- 6.3.12 Freeze-Dried Formulations -- 6.4 Screening Methods -- 6.4.1 DSC -- 6.4.2 Thermal Scanning with Spectroscopic Detection of Protein Unfolding -- 6.5 Accelerated and Long-Term Stability Testing -- 6.5.1 Regulatory Perspective -- 6.5.2 Accelerated Stability Testing -- 6.6 Analytical Techniques for Stability Testing -- 6.6.1 Cell-Based Bioassays and In Vitro Binding Assays -- 6.6.2 High-Performance Liquid Chromatography and Capillary Zone Electrophoresis -- 6.6.3 Mass Spectrometry-Based Analysis -- 6.6.4 Detection of Protein Aggregates -- 6.6.5 Crude Analytical Assays: PAGE, IEF, Blotting, FTIR, CD, and UV Fluorescence -- 6.7 Conclusions -- References -- 7: Production of PEGylated Proteins -- 7.1 Introduction -- 7.2 General Considerations -- 7.2.1 Efficiency of PEG Conjugation -- 7.2.2 Control of Positional Isomerism -- 7.2.3 Control of the Number of PEG Adducts -- 7.2.4 Purification of Target Products -- 7.3 PEGylation Chemistry -- 7.3.1 Amine Conjugation -- 7.3.2 Thiol Conjugation -- 7.3.3 Oxidized Carbohydrate or N-Terminal Conjugation -- 7.3.4 Transglutaminase-Mediated Enzymatic Conjugation -- 7.3.5 Miscellaneous Conjugation Chemistries.

7.3.6 Reversible PEGylation -- 7.4 PEGylated Protein Purification -- 7.4.1 Removal of Low-Molecular-Weight Contaminants -- 7.4.2 Removal of Free PEG -- 7.4.3 Separation of PEGylated and Native Protein Forms -- 7.4.4 Separation of PEGylated Species -- 7.5 Conclusions -- References -- Part Three: Advances in Process Development -- 8: Affinity Chromatography: Historical and Prospective Overview -- 8.1 History and Role of Affinity Chromatography in the Separation Sciences -- 8.1.1 Introduction -- 8.1.2 Early History -- 8.1.3 Biological Ligands -- 8.1.4 Synthetic and Designed Ligands -- 8.1.5 Alternative Ligands -- 8.1.6 Role of Affinity Chromatography in the Separation Sciences -- 8.2 Overview of Affinity Chromatography: Theory and Methods -- 8.2.1 Basic Chromatographic Theory -- 8.2.2 Matrix Selection and Immobilization of an Affinity Ligand -- 8.2.3 Other Considerations -- 8.3 Affinity Ligands -- 8.3.1 Biological Ligands -- 8.3.1.1 Immunoaffinity Adsorbents -- 8.3.1.2 Bacterial Proteins -- 8.3.1.3 Lectins -- 8.3.1.4 Heparin -- 8.3.1.5 Glutathione -- 8.3.1.6 Avidin and Streptavidin -- 8.3.1.7 Vitamins and Hormones -- 8.3.1.8 Nucleic Acids -- 8.3.1.9 Alternative Affinity Methods -- 8.3.2 Synthetic and Designed Ligands -- 8.3.2.1 Immobilized Metals -- 8.3.2.2 Hydrophobic Ligands -- 8.3.2.3 Thiophilic Ligands -- 8.3.2.4 Histidine -- 8.3.2.5 Mixed-Mode Adsorbents -- 8.3.2.6 Boronate -- 8.3.2.7 Benzhydroxamic Acid -- 8.3.2.8 Dye Ligands -- 8.3.2.9 Biomimetics -- 8.4 Affinity Ligands in Practice: Biopharmaceutical Production -- 8.5 Conclusions and Future Perspectives -- References -- 9: Hydroxyapatite in Bioprocessing -- 9.1 Introduction -- 9.2 Materials and Interaction Mechanisms -- 9.2.1 Apatites for Chromatography -- 9.2.2 Structure-Function Relationship -- 9.2.3 Retention Mechanisms in Apatite Chromatography -- 9.3 Setting up a Separation.

9.3.1 General Considerations -- 9.3.2 Elution Mode -- 9.3.3 Displacement Mode -- 9.4 Separation Examples -- 9.4.1 Proteins in General -- 9.4.2 Antibodies -- 9.4.3 Polynucleotides -- 9.4.4 Others -- 9.5 Conclusions -- References -- 10: Monoliths in Bioprocessing -- 10.1 Introduction -- 10.2 Properties of Chromatographic Monoliths -- 10.3 Monolithic Analytical Columns for Process Analytical Technology Applications -- 10.3.1 Upstream Applications -- 10.3.2 Downstream Applications -- 10.3.2.1 HPLC Analysis of IgG Proteins -- 10.3.2.2 HPLC Analysis of the IgM Samples -- 10.3.2.3 HPLC Anion-Exchange Analysis of the PEGylated Proteins -- 10.3.2.4 Viruses -- 10.4 Monoliths for Preparative Chromatography -- 10.4.1 Protein Purification -- 10.4.2 Purification of Viruses -- 10.4.3 Plasmid DNA Purification -- 10.4.4 Negative Chromatography -- 10.5 Enzyme Reactors -- 10.5.1 Proteome Analysis -- 10.5.2 Biosensors -- 10.5.3 Bioconversion of Target Molecules -- 10.5.4 Study of Enzyme-Intrinsic Properties -- 10.6 Conclusions -- References -- 11: Membrane Chromatography for Biopharmaceutical Manufacturing -- 11.1 Membrane Adsorbers - Introduction and Technical Specifications -- 11.1.1 Introduction -- 11.1.2 Membrane Adsorber Construction -- 11.1.3 Types of Available Ligands -- 11.1.4 Use and Scaling-Up with Membrane Adsorbers -- 11.2 Comparing Resins and Membrane Adsorbers -- 11.2.1 Flow-Through Polishing Applications -- 11.2.2 Bind-and-Elute Applications -- 11.2.3 Economical Modeling and Case Studies -- 11.3 Membrane Chromatography Applications and Case Studies -- 11.3.1 Validation of Membranes into a Purification Process -- 11.3.2 Virus Purification and Vaccine Manufacture -- 11.3.3 Virus Removal -- 11.3.4 Endotoxin Removal -- 11.3.5 HCP Removal -- 11.3.6 DNA Removal -- 11.3.7 Aggregate Reduction -- 11.4 Conclusions -- References.

12: Modeling and Experimental Model Parameter Determination with Quality by Design for Bioprocesses.
Abstract:
Cost-effective manufacturing of biopharmaceutical products is rapidly gaining in importance, while healthcare systems across the globe are looking to contain costs and improve efficiency. To adapt to these changes, industries need to review and streamline their manufacturing processes. This two volume handbook systematically addresses the key steps and challenges in the production process and provides valuable information for medium to large scale producers of biopharmaceuticals. It is divided into seven major parts: - Upstream Technologies - Protein Recovery - Advances in Process Development - Analytical Technologies - Quality Control - Process Design and Management - Changing Face of Processing With contributions by around 40 experts from academia as well as small and large biopharmaceutical companies, this unique handbook is full of first-hand knowledge on how to produce biopharmaceuticals in a cost-effective and quality-controlled manner.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: