Cover image for GNSS Applications and Methods.
GNSS Applications and Methods.
Title:
GNSS Applications and Methods.
Author:
Gleason, Scott.
ISBN:
9781596933309
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (527 pages)
Contents:
GNSS Applications and Methods -- Contents -- Preface -- Chapter 1 Global Navigation Satellite Systems: Present and Future -- 1.1 Introduction -- 1.1.1 Current and Planned GNSS Constellations -- 1.1.2 GNSS User Architectures -- 1.1.3 Current GNSS Applications -- 1.1.4 Positioning Performance Measures -- 1.2 GNSS Signal Improvements -- 1.2.1 Additional GPS Frequencies -- 1.2.2 Higher Accuracy Ranging -- 1.2.3 Longer Ranging Codes -- 1.2.4 Higher Transmit Power Levels -- 1.3 Advanced Receiver Technology -- 1.3.1 Conventional Receivers -- 1.3.2 FPGA-Based Receivers -- 1.3.3 Software-Defined GNSS Receivers -- 1.4 Road Map: How To Use This Book -- 1.5 Further Reading -- References -- Chapter 2 GNSS Signal Acquisition and Tracking -- 2.1 Introduction -- 2.2 GNSS Signal Background -- 2.2.1 BOC Signal Modulation -- 2.2.2 PRN Codes -- 2.3 Searching for PSK Signals -- 2.4 Tracking PSK Signals -- 2.4.1 Phase-Locked Loop (PLL) -- 2.4.2 Frequency-Locked Loop (FLL) -- 2.4.3 Delay-Locked Loop (DLL) -- 2.5 Searching for BOC Signals -- 2.6 Tracking BOC Signals -- 2.6.1 BOC Tracking Using a Single Sideband (SSB) -- 2.6.2 BOC Tracking with Multiple-Gate Discriminators (MGD) -- 2.6.3 BOC Tracking with the Bump-Jumping (BJ) Algorithm -- 2.6.4 BOC Tracking with the Dual Estimator (DE) -- References -- Chapter 3 GNSS Navigation: Estimating Position, Velocity, and Time -- 3.1 Overview -- 3.2 Position, Velocity, and Time (PVT) Estimation -- 3.2.1 Estimating Receiver Position and Clock Bias -- 3.2.2 Impact of Ionosphere Errors -- 3.2.3 Impact of Satellite-User Geometry (DOP) -- 3.2.4 Estimating Receiver Velocity and Clock Drift -- 3.2.5 Estimating Time -- 3.2.6 PVT Estimation Using an Extended Kalman Filter (EKF) -- 3.2.7 Enhanced Accuracy via Carrier Phase Positioning -- 3.2.8 Error Sources -- 3.3 GNSS Simulator -- 3.3.1 GNSS Simulator Measurement Details.

3.3.2 GNSS Simulator Interface Files -- 3.3.3 Postprocessing GNSS Simulator Output Files -- 3.4 GNSS Simulator Examples -- 3.4.1 Example 1: Simple Navigation -- 3.4.2 Example 2: Traveling Between Destinations -- 3.4.3 Example 3: Waypoint Navigation Using FlightGear -- 3.4.4 Example 4: Dual-Frequency Calculation -- 3.4.5 Example 5: Adding Galileo Satellites -- 3.4.6 Example 6: Spacecraft-Based Receiver -- 3.5 Summary -- 3.6 Programs and Tools Provided on the DVD -- References -- Chapter 4 Differential GNSS: Accuracy and Integrity -- 4.1 Introduction to DGNSS -- 4.2 Fundamentals of Differential GNSS -- 4.2.1 Error Sources and Degree of Spatial Correlation -- 4.2.2 Local Versus Regional DGNSS Corrections and DGNSS Networks -- 4.2.3 Means of Distributing DGNSS Corrections -- 4.2.4 Managing the Latency of DGNSS Corrections -- 4.3 DGNSS Integrity Threats and Mitigations -- 4.3.1 Integrity Threats and GNSS Faults -- 4.3.2 Integrity Threats from DGNSS System Faults -- 4.3.3 Integrity Threats from Signal Propagation Anomalies -- 4.4 Summary -- 4.5 Data Provided on the DVD -- References -- Chapter 5 A GPS Software Receiver -- 5.1 Introduction and Background -- 5.2 License, Development Environments, and Tools -- 5.2.1 License -- 5.2.2 GNU/Linux -- 5.2.3 Microsoft Windows -- 5.2.4 Apple Mac OS X -- 5.2.5 Displaying the Receiver Output -- 5.3 Example Data Sets -- 5.3.1 Data Set 1 -- 5.3.2 Data Set 2, for Use with WAAS Corrections Data -- 5.4 Using the fastgps Software Receiver -- 5.4.1 Configuration File -- 5.4.2 Output Files -- 5.5 fastgps Software Receiver Architecture -- 5.5.1 Timing and Clock Management -- 5.5.2 Main Processing Loop -- 5.5.3 Acquisition -- 5.5.4 Tracking -- 5.5.5 Navigation -- 5.6 Suggested Future Improvements -- 5.7 Further Reading -- References -- Chapter 6 Integration of GNSS and INS: Part 1 -- 6.1 Introduction -- 6.2 Inertial Navigation.

6.2.1 Inertial Sensors -- 6.2.2 Coordinate Frames -- 6.2.3 Mechanization Equations -- 6.2.4 System Initialization -- 6.2.5 INS Error Model -- 6.3 GNSS/INS Integration Concepts -- 6.3.1 Motivation for GNSS/INS Integration -- 6.3.2 Integration Architecture Overview -- 6.3.3 Loose GNSS/INS Integration -- 6.3.4 Tight GNSS/INS Integration -- 6.3.5 Deep GNSS/INS Integration -- 6.4 Filtering/Estimation Algorithms -- 6.4.1 Overview of Extended Kalman Filter (EKF) for GNSS/INS -- 6.4.2 Time Evolution of a GNSS/INS System -- 6.5 GNSS/INS Integration Implementation -- 6.5.1 IMU Sensor Error Models -- 6.5.2 GNSS/INS Integration: Step-by-Step -- 6.6 Practical Considerations -- 6.6.1 Lever Arm -- 6.6.2 Timing Requirements -- 6.7 Summary and Further Reading -- References -- Chapter 7 Integration of GNSS and INS: Part 2 -- 7.1 Introduction -- 7.2 Case Study 1: Low-Cost GNSS/INS Integrated Navigator -- 7.3 Case Study 2: Vehicle Sideslip Estimation -- 7.3.1 Motivation -- 7.3.2 Observability -- 7.4 Case Study 3: INS To Aid High-Accuracy GNSS -- 7.4.1 GNSS Ambiguity-Resolution Overview -- 7.4.2 Benefits of INSs to Ambiguity Resolution -- 7.5 Software Examples -- References -- Chapter 8 Integrated LADAR, INS, and GNSS Navigation -- 8.1 Introduction -- 8.2 LADAR-Based TERRAIN Integration Methodology -- 8.3 LADAR-Based Terrain-Referenced Position Estimation -- 8.3.1 Position Estimate and SSE Surface -- 8.3.2 Exhaustive Grid Search -- 8.3.3 Gradient-Based Search -- 8.4 Estimation of Inertial Velocity Error -- 8.5 Case Studies of TERRAIN System Performance -- 8.5.1 Case Study I-General Positioning System -- 8.5.2 Case Study II-Precision Approach Guidance System -- References -- Chapter 9 Combining GNSS with RF Systems -- 9.1 Location System Alternatives -- 9.2 RF Location Types and Classifications -- 9.2.1 Location by Proximity.

9.2.2 Location by Radio Direction Finding (DF) and Angle of Arrival (AOA) -- 9.2.3 Location Using Doppler Frequency -- 9.2.4 Location Estimation Using Signal Strength -- 9.2.5 Location Using Time, Phase, and Differential Timing of Arrival (TOA,POA, and TDOA) -- 9.3 Estimation Methods -- 9.3.1 Deterministic Estimation Using Triangulation -- 9.3.2 Deterministic Estimation Using Nearest Neighbor -- 9.3.3 Nonranging-Based Location Estimation -- 9.3.4 Probabilistic Estimation Using Centroid/Center of Mass -- 9.3.5 Bayesian State Estimation -- 9.4 Integration Methods -- 9.4.1 Least-Squares Integration -- 9.4.2 Kalman Filter Integration -- 9.4.3 Contextual Processing -- 9.5 Example Systems -- 9.5.1 Pseudolites -- 9.5.2 Synchrolites -- 9.5.3 Self-Synchronizing Networks -- 9.5.4 GPS and Relative Navigation -- 9.5.5 TV-Based Location -- 9.5.6 Integration of Cellular Location Systems and GNSS -- 9.6 Examples Included on the DVD -- 9.6.1 RF Antennas -- 9.6.2 Doppler Calculations -- 9.6.3 K-Nearest Neighbor Plot -- 9.7 Further Reading -- References -- Chapter 10 Aviation Applications -- 10.1 Introduction -- 10.2 Classes of Aviation Augmentation Systems -- 10.3 Benefits of GPS and Augmentations to Aviation Users -- 10.3.1 Oceanic Flight -- 10.3.2 Overland Flight: En Route, Terminal, and Nonprecision Approach -- 10.3.3 Precision Approach and Landing -- 10.4 Future of GNSS Navigation in Aviation -- 10.4.1 GNSS Modernization -- 10.4.2 Next-Generation Air Traffic Management System (NextGen) -- 10.4.3 Backup Navigation Capabilities for Aviation -- 10.5 Functionality of Aviation Augmentation Systems -- 10.5.1 Augmentation System Performance Requirements -- 10.5.2 Error Bounding Under Nominal Conditions -- 10.5.3 Error Bounding Under Anomalous Conditions -- 10.5.4 Monitoring -- 10.6 Conclusion -- 10.7 Further Reading -- References.

Chapter 11 Integrated GNSS and Loran Systems -- 11.1 Introduction -- 11.2 Loran Overview -- 11.2.1 Loran-C -- 11.2.2 eLoran -- 11.3 Theory of Operation -- 11.4 Historical Reasons for GNSS/Loran Integration -- 11.5 Integration Scenarios -- 11.5.1 Position-Domain Integration -- 11.5.2 Range-Domain Integration -- 11.5.3 Dej́a` Vu Navigation: A Case Study of Range-Domain Integration -- 11.5.4 Integrity with Range-Domain Integration -- 11.5.5 Improved Accuracy for Loran Integrity -- 11.6 Conclusions -- References -- Chapter 12 Indoor and Weak Signal Navigation -- 12.1 Introduction -- 12.2 Signal Processing Considerations Related to Weak Signals -- 12.2.1 Acquisition of Weak Signals -- 12.2.2 Clock Stability and Integration Times -- 12.2.3 Tracking of Weak Signals -- 12.2.4 Cross-Correlation and Interfering Signals -- 12.2.5 Multipath Mitigation -- 12.2.6 Benefits of Future GNSS -- 12.3 Aiding Possibilities and Supportive Systems -- 12.3.1 Assistance -- 12.3.2 Supportive Systems for GNSS -- 12.4 Navigation Algorithms for Difficult Signal Conditions -- 12.4.1 Constraints on User Motion -- 12.4.2 Map Matching -- 12.4.3 Adaptive Algorithms -- 12.5 Quality and Integrity Monitoring -- 12.5.1 Introduction to Integrity Monitoring -- 12.5.2 Reliability Testing -- 12.5.3 Weighted Least-Squares Notation -- 12.5.4 Residuals and Redundancy -- 12.5.5 Global Test -- 12.5.6 Local Test -- 12.5.7 Null Hypothesis and Alternative Hypothesis -- 12.5.8 Parameters for Fault Detection and Exclusion -- 12.5.9 Multiple Outliers -- 12.5.10 Fault Detection and Exclusion in Kalman Filtering -- 12.5.11 Quality Control -- 12.5.12 The Practical Side of Quality Control -- 12.6 Examples Included on the DVD -- 12.6.1 Example 1: Acquisition of Weak Signals -- 12.6.2 Example 2: Fault Detection and Exclusion -- 12.7 Summary -- 12.8 Further Reading -- References.

Chapter 13 Space Applications.
Abstract:
Placing emphasis on applications development, this unique resource offers a highly practical overview of GNSS (global navigation satellite systems), including GPS. The applications presented in the book range from the traditional location applications to combining GNSS with other sensors and systems and into more exotic areas, such as remote sensing and space weather monitoring. Written by leading experts in the field, this book presents the fundamental underpinnings of GNSS and provides you with detailed examples of various GNSS applications. Moreover, the software included with the book contains valuable processing tools and real GPS data sets to help you rapidly advance your own work in the field. You will find critical information and tools that help give you a head start to embark on future research and development projects.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: