
Methods in Physical Chemistry.
Title:
Methods in Physical Chemistry.
Author:
Schäfer, Rolf.
ISBN:
9783527636853
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (874 pages)
Contents:
Methods in Physical Chemistry -- Contents to Volume -- List of Contributors -- Part I Gas Phase -- 1 Manipulating the Motion of Complex Molecules: Deflection, Focusing, and Deceleration of Molecular Beams for Quantum-State and Conformer Selection -- 1.1 Introduction: Controlled Molecules -- 1.2 Experimental Methods -- 1.2.1 Large Neutral Molecules in the Gas Phase -- 1.2.2 Manipulation of Molecular Beams with Electric and Magnetic Fields -- 1.2.3 Alignment and Orientation of Molecular Ensembles -- 1.3 Experimental Details -- 1.3.1 Deflection -- 1.3.2 Alternating-Gradient Focusing -- 1.3.3 Alternating-Gradient Deceleration -- 1.4 Selected Applications -- 1.4.1 Cluster and Biomolecules Deflection -- 1.4.2 Conformer Selection -- 1.4.3 Three-Dimensional Orientation -- 1.4.4 Molecular-Frame Photoelectron Angular Distributions -- 1.5 Conclusions and Perspectives -- References -- 2 Laser Ionization Spectroscopy -- 2.1 Introduction -- 2.2 Basic Principles -- 2.3 Experimental Methods -- 2.3.1 Single-Photon Ionization -- 2.3.2 Resonance Enhanced Multiphoton Ionization -- 2.3.3 Ion-Dip Spectroscopy -- 2.3.4 Pulsed-Field Ionization -- 2.3.5 Strong-Field Ionization -- 2.3.6 Time-of-Flight Mass Spectrometer -- 2.4 Case Studies -- 2.4.1 Identification of Substances and Structural Isomers -- 2.4.2 Trace Analysis of Molecules -- 2.4.3 Laser Ionization as a Source of State-Selected Ions -- 2.5 Conclusions and Perspectives -- 2.6 Supplementary Material -- References -- 3 Mass Spectrometry for Ion Chemistry and Links from the Gas Phase to ''Real'' Processes -- 3.1 Introduction -- 3.2 Key Experimental Methods -- 3.3 Ion Structures -- 3.3.1 Differentiation of C7H7+ Isomers -- 3.3.2 Generation, Characterization, and Spectroscopy of [FeCH4O]+ Ions -- 3.4 Ion Energetics -- 3.4.1 Threshold Ionization and ''Titration'' of Reaction Barriers.
3.4.2 Thermochemistry of FeOmHn-/0/+/2+ Ions (''Gaseous Rust'') -- 3.5 Reactions of Neutral Molecules Studied by Mass Spectrometry -- 3.5.1 Electron-Transfer Mass Spectrometry -- 3.5.2 Charge-Tagging Methods -- 3.6 Ion Catalysis -- 3.7 Summary and Perspectives -- References -- Part II Condensed-Phase -- 4 Solid State NMR: a Versatile Tool in Solid State Chemistry and Materials Science -- 4.1 Introduction -- 4.2 Basic Principles -- 4.2.1 Nuclear Magnetism and Precession -- 4.2.2 Signal Excitation and Detection -- 4.2.3 Relaxation Phenomena -- 4.2.4 Internal Interactions -- 4.3 Experimental Techniques -- 4.3.1 Sample Spinning Techniques -- 4.3.2 Spin Echo Decay Methods -- 4.3.3 Hetero- and Homonuclear Decoupling -- 4.3.4 Multi-Dimensional NMR -- 4.3.5 Coherence Transfer Techniques -- 4.3.6 Recoupling of Homonuclear Magnetic Dipole-Dipole Interactions -- 4.3.7 Recoupling of Heteronuclear Magnetic Dipole-Dipole Interactions -- 4.4 Selected Applications -- 4.4.1 Glasses -- 4.4.2 Supramolecular Systems -- 4.5 Conclusion -- 4.6 Supplementary Material -- References -- 5 EPR-ESR-EMR, an Ongoing Success Story -- 5.1 Introduction -- 5.2 Basic Principles -- 5.3 Experimental Methods -- 5.3.1 Continuous Wave EMR at High Fields and Frequencies -- 5.3.2 Pulsed EMR -- 5.3.3 Merging EPR and NMR: Pulsed ENDOR -- 5.4 Case Studies -- 5.4.1 Physics -- 5.4.2 Chemistry -- 5.4.3 Biology -- 5.5 Conclusions and Perspectives -- 5.6 Supplementary Material -- References -- 6 Broadband Conductivity Spectroscopy for Studying the Dynamics of Mobile Ions in Materials with Disordered Structures -- 6.1 Introduction: ''Microscopy in Time'' in Disordered Ionic Materials -- 6.2 Experimental Techniques: Spanning More Than 17 Decades in Frequency -- 6.2.1 General -- 6.2.2 Complex Conductivities from Waveguide Spectroscopy.
6.2.3 Complex Conductivities from Fourier Transform Infrared Spectroscopy -- 6.3 Linear Response Theory: Current Density and Conductivity -- 6.4 Conductivity Spectra: Universal Properties Detected -- 6.4.1 Time-Temperature Superposition -- 6.4.2 ''First'' Universality -- 6.4.3 ''Second'' Universality -- 6.5 ''First'' Universality: Spectra and Modeling -- 6.5.1 Different Approaches -- 6.5.2 The MIGRATION Concept -- 6.5.3 Permittivity and Localized Mean Square Displacement -- 6.5.4 Non-Arrhenius DC Conductivities -- 6.6 ''Second'' Universality: Spectra and Modeling -- 6.6.1 Approaches for Modeling -- 6.6.2 Time-Dependent Double-Well Potentials -- 6.6.3 NCL-Type Effects Detected at High Frequencies -- 6.6.4 A New Picture Emerges for the Low-Temperature NCL Effect -- References -- 7 X-Ray Absorption Spectroscopy - the Method and Its Applications -- 7.1 Introduction -- 7.2 Basic Principles - the EXAFS Equation -- 7.3 Experimental Methods -- 7.3.1 Experimental Design -- 7.3.2 Data Reduction and Evaluation -- 7.3.3 Data Analysis and Interpretation -- 7.4 Case Studies -- 7.4.1 Material Science -- 7.4.2 Nanoparticles and Heterogeneous Catalysis -- 7.4.3 Homogeneous Catalysis -- 7.4.4 Biochemistry -- 7.5 Conclusion -- References -- 8 Diffraction Methods: Structure Determination and Phase Analysis of Solids -- 8.1 Introduction: Diffraction - What for? -- 8.2 Basic Principles of the Elastic Interaction of Radiation and Periodic Arrays of Atoms -- 8.2.1 Scattering - Diffraction -- 8.2.2 Crystalline Solids and Symmetry -- 8.3 Methods and Their Applications -- 8.3.1 Generation and Detection of X-Rays and Neutrons -- 8.3.2 Single Crystal Analysis - Structure Determination and Refinement -- 8.3.3 Powder Diffractometry - Finger Print, Phase Analysis, or Structure Determination -- 8.4 Summary: Diffractometry-Where To? -- References.
9 Small-Angle X-Ray and Neutron Scattering - Two Complementary Methods to Study Soft Matter Structure -- 9.1 Introduction -- 9.2 Basic Theory of Small-Angle Scattering -- 9.2.1 Calculation of the Interference Pattern -- 9.3 X-Rays and Neutrons -- 9.3.1 X-Rays -- 9.3.2 Neutrons -- 9.4 Selected Applications -- 9.4.1 Ion-Track Etched Polycarbonate Nanopores -- 9.4.2 Water-in-Oil Droplet Microemulsions -- 9.5 Conclusions -- References -- 10 Perturbed γ-γ Angular Correlation -- 10.1 Introduction -- 10.2 Basic Principles -- 10.2.1 PAC Basics -- 10.2.2 Angular Correlation in the Emission of γ -Rays -- 10.2.3 Nuclear Interactions -- 10.2.4 The PAC Experiment -- 10.3 Case Studies -- 10.3.1 Local Magnetic Fields in Iron -- 10.3.2 Spin Transitions in LaCoO3 -- 10.3.3 Structural Refinements of Sesquioxides, M2O3 -- 10.3.4 Surface Studies -- 10.3.5 Reactivity of Thin Films -- 10.3.6 Strained Silicon -- 10.3.7 Diffusion -- 10.4 Conclusions and Perspectives -- References -- 11 Mössbauer Spectroscopy -- 11.1 Introduction -- 11.2 Basic Principles -- 11.2.1 Mössbauer Isotopes -- 11.2.2 The Mössbauer Effect -- 11.3 Experimental Methods -- 11.3.1 Mössbauer Spectrometer -- 11.3.2 Recording Mössbauer Spectra -- 11.3.3 Hyperfine Interactions and Mössbauer Parameters -- 11.4 Case Studies and Selected Applications -- 11.4.1 Basic Information on Structure and Bonding -- 11.4.2 Switchable Molecules: Spin Crossover -- 11.4.3 Mössbauer Emission Spectroscopy - After-Effects of Nuclear Decay -- 11.4.4 Industrial Applications -- 11.4.5 Miniaturized Portable Mössbauer Spectroscopy -- 11.5 Outlook -- References -- 12 Electron Energy Loss Spectroscopy as an Experimental Probe for the Crystal Structure and Electronic Situation of Solids -- 12.1 Introduction -- 12.2 Basics of EELS -- 12.2.1 Theoretical Background -- 12.2.2 The Energy-Loss Spectrum -- 12.2.3 The Use of Core-Loss Edges.
12.2.4 Fine Structure of Core-Loss Edges -- 12.3 Selected Applications of EELS -- 12.3.1 General Remarks -- 12.3.2 Determination of the Composition -- 12.3.3 Determination of the Valence State -- 12.3.4 Structural Investigations -- 12.4 Outlook -- References -- Part III Interfaces -- 13 Raman Spectroscopy: Principles, Benefits, and Applications -- 13.1 Introduction -- 13.2 Basic Principles: Raman Scattering -- 13.3 Experimental Methods -- 13.3.1 General Aspects -- 13.3.2 Raman Instrumentation -- 13.3.3 Coupling Raman with Microscopy -- 13.3.4 Benefits of Raman Spectroscopy -- 13.4 Applications of Raman Spectroscopy -- 13.4.1 Chemical Applications -- 13.4.2 Biological Applications -- 13.4.3 Variations of Raman Spectroscopy -- 13.4.4 Data Analysis -- 13.5 Conclusion -- References -- 14 Diffuse Reflectance Infrared Fourier Transform Spectroscopy: an In situ Method for the Study of the Nature and Dynamics of Surface Intermediates -- 14.1 Introduction -- 14.1.1 IR Spectroscopy of Solids -- 14.2 Basic Principles -- 14.3 Experimental Set-Up -- 14.3.1 DRIFTS Accessories -- 14.3.2 DRIFTS Reactor Cells for Heterogeneous Catalysis -- 14.4 Application Examples -- 14.4.1 NOx Reduction -- 14.4.2 Quantification of Oxygen Surface Groups -- 14.5 Summary -- References -- 15 Photoelectron Spectroscopy in Materials Science and Physical Chemistry: Analysis of Composition, Chemical Bonding, and Electronic Structure of Surfaces and Interfaces -- 15.1 Introduction -- 15.2 Experimental Procedure1) -- 15.2.1 Basic Set-Up and Operation Principle -- 15.2.2 Sample Preparation -- 15.3 Case Studies: XPS -- 15.3.1 Analysis of Peak Intensities -- 15.3.2 Analysis of Energy Shifts -- 15.3.3 Interface Analysis -- 15.4 Case Studies: UPS -- 15.5 Conclusions and Perspectives -- 15.6 Supplementary Material -- References.
16 Photoelectron Microscopy: Imaging Tools for the Study of Surface Reactions with Temporal and Spatial Resolution.
Abstract:
Thanks to the progress made in instruments and techniques, the methods in physical chemistry have developed rapidly over the past few decades, making them increasingly valuable for scientists of many disciplines. These two must-have volumes meet the needs of the scientific community for a thorough overview of all the important methods currently used. As such, this work bridges the gap between standard textbooks and review articles, covering a large number of methods, as well as the motivation behind their use. A uniform approach is adopted throughout both volumes, while the critical comparison of the advantages and disadvantages of each method makes this a valuable reference for physical chemists and other scientists working with these techniques.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View