
Geometry, Topology and Dynamics of Character Varieties.
Title:
Geometry, Topology and Dynamics of Character Varieties.
Author:
Goldman, William.
ISBN:
9789814401364
Personal Author:
Physical Description:
1 online resource (362 pages)
Series:
Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore ; v.23
Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore
Contents:
CONTENTS -- Foreword -- Preface -- An Invitation to Elementary Hyperbolic Geometry Ying Zhang -- Introduction -- 1. Euclid's Elements, Book I and Neutral Plane Geometry -- 1.1. A brief review of contents of Elements, Book I -- 1.2. A useful lemma -- 1.3. A gure-free proof of Proposition I.7 -- 1.4. More notes on Elements, Book I -- 1.5. Playfair's axiom -- 1.6. Neutral plane geometry -- 1.7. Angle-sums of triangles and Legendre's Theorems -- 1.8. Quadrilaterals with two consecutive right angles -- 1.9. Saccheri and Lambert quadrilaterals -- 1.10. Variation of triangles in a neutral plane -- 1.11. A midline configuration for triangles -- 1.12. More theorems of neutral plane geometry -- 1.13. Small angles -- 2. Hyperbolic Plane Geometry -- 2.1. Hyperbolic plane -- 2.2. Asymptotic Parallelism -- 2.3. Angle of parallelism -- 2.4. The variation in the distance between two straight lines -- 2.5. Some more theorems in hyperbolic plane geometry -- 2.6. Construction of the common perpendicular to two ultra-parallel straight lines -- 2.7. Construction of asymptotic parallels -- 2.8. Ideal points -- 2.9. Horocycles -- 2.10. Construction of the straight line joining two given ideal points -- 2.11. Ultra-ideal points -- 2.12. The projective plane associated to a hyperbolic plane -- 2.13. Center-pencils of a hyperbolic triangle -- 2.14. Equidistant curves -- 2.15. Positions of proper points relative to an ideal point -- 2.16. Hyperbolic areas via equivalence of triangles -- 2.17. Metric relations of corresponding arcs in concentric horocycles -- 3. Isometries of the Hyperbolic Plane -- 3.1. Isometries and reections in straight lines -- 3.2. Orientation preserving/reversing isometries -- 3.3. Rotations -- 3.4. Translations -- 3.5. Isometries of parabolic type -- 3.6. Redundancy of two reflections.
3.7. Orientation reversing isometries as reflections and glide reflections -- 3.8. Isometries as projective transformations -- 3.9. Invariant projective lines of -- 3.10. Composition of two orientation preserving isometries other than two translations -- 3.11. Composition of two translations -- 3.12. Conjugates of isometries -- 3.13. The orthic triangle -- 4. Hyperbolic Trigonometry Derived from Isometries -- 4.1. Some identities of isometries of a neutral plane -- 4.2. Some trigonometric formulas in H2(k) -- 4.3. Upper half-plane model U2 for hyperbolic plane H2(1) -- 4.4. Matrices of certain isometries of U2 -- 4.5. Trigonometric laws via identities of isometries -- 4.6. Suggested further readings -- Acknowledgments -- References -- Hyperbolic Structures on Surfaces Javier Aramayona -- 1. Introduction -- 2. Plane Hyperbolic Geometry -- 2.1. Mobius transformations -- 2.1.1. Classification in terms of trace and fixed points -- 2.2. Models for hyperbolic geometry -- 2.2.1. Hyperbolic distance -- 2.2.2. Mobius transformations act by isometries -- 2.2.3. The Cayley transformation -- 2.2.4. Hyperbolic geodesics -- 2.2.5. The boundary at infinity -- 2.2.6. The full isometry group -- 2.2.7. Dynamics of elements of Isom+(H) -- 2.3. Fuchsian groups and fundamental domains -- 2.3.1. Fuchsian groups -- 2.3.2. Fundamental domains -- 2.3.3. The action of a group on a Dirichlet domain -- 3. Hyperbolic Structures on Surfaces -- 3.1. Definition and examples -- 3.2. The Cartan-Hadamard Theorem. Developing map and holonomy -- 3.2.1. The developing map -- 3.2.2. Two technical lemmas -- 3.2.3. Holonomy -- 4. Teichmuller Space -- 4.1. Two definitions -- 4.2. Fenchel-Nielsen coordinates -- 4.2.1. Length functions -- 4.2.2. Multicurves and pants decompositions -- 4.2.3. The Teichmuller space of a pair of pants -- 4.2.4. The coordinates -- 5. Mapping Class Groups.
5.1. Definition and examples -- 5.1.1. Examples of mapping classes -- 5.2. The action of Mod(S) on T (S) -- Acknowledgements -- References -- Degenerations of Hyperbolic Structures on Surfaces Christopher J. Leininger -- 1. Introduction -- 1.1. Notation, terminology and some conventions -- 2. Length Functions -- 3. Measured Foliations -- 3.1. Definition by example -- 3.2. Geometric intersection number I: Measured foliations -- 3.3. Geodesics in the q-metric -- 4. Measured Laminations -- 4.1. Geometric intersection number II: Measured laminations -- 5. Measured Foliations and Measured Laminations -- 6. Dehn-Thurston Coordinates -- 7. Degenerations of Hyperbolic Structures -- 7.1. The fundamental lemma -- 7.2. Final comments on Theorem 7.1 -- 7.2.1. Application to the mapping class group -- 7.2.2. Other approaches -- Acknowledgements -- References -- Ping-Pong Lemmas with Applications to Geometry and Topology Thomas Koberda -- 1. Introduction -- 2. Free Groups and Free Products -- 3. Hyperbolic Geometry -- 4. Right-Angled Artin Groups -- 5. Mapping Class Groups -- 6. Effective Ping-Pong and the Word Problem -- Acknowledgements -- References -- Creating Software for Visualizing Kleinian Groups Yasushi Yamashita -- 1. Introduction -- 2. Python -- 2.1. Python setup -- 2.2. Basic data types and operations -- 2.3. Control ow -- 2.4. Function -- 2.5. Global variable and local variable -- 2.6. GUI -- 2.7. An example -- 3. Once Punctured Torus Groups -- 3.1. The deformation space of once punctured torus groups -- 3.2. Ford domain -- 3.3. J rgensen's normalization -- 3.4. J rgensen's method to construct the Ford domain -- 3.5. Limit set -- 4. OptPy -- 5. Program List -- 6. Using OptPy -- Acknowledgements -- References -- Traces in Complex Hyperbolic Geometry John R. Parker -- 1. Introduction -- 2. Background -- 2.1. Hermitian and unitary matrices.
2.2. Complex hyperbolic space and its isometries -- 3. The Geometry of Isometries -- 3.1. Introduction -- 3.2. Classification of elements of SU(2, 1) by their trace -- 3.3. Traces and eigenvalues for loxodromic maps -- 3.4. Eigenvalues and complex displacement for loxodromic maps -- 4. Two Generator Groups and Fenchel-Nielsen Coordinates -- 4.1. Introduction -- 4.2. Trace identities in M(3, C) -- 4.3. Trace identities in SL(3, C) -- 4.4. Trace parameters for two generator groups of SU(2, 1) -- 4.5. Cross-ratios -- 4.6. Twist-bend parameters -- 5. Traces for Triangle Groups -- 5.1. Introduction -- 5.2. Reflections -- 5.3. Complex reflections in SU(2, 1) -- 5.4. Equilateral triangle groups -- 5.5. General triangle groups -- 5.6. Traces in general triangle groups -- Acknowledgements -- References -- Lorentzian Geometry Todd A. Drumm -- 1. Introduction -- 1.1. Physical considerations -- 2. Flat Lorentz Spaces -- 3. Compactifications -- 3.1. Euclidean compactification -- 3.2. The Einstein Universes -- 3.3. Extending Lorentzian lines in the Einstein Universe -- 3.4. Covers of the Einstein Universe -- 4. Constant Curvature Spaces -- 4.1. Positive curvature -- 4.1.1. The round sphere -- 4.1.2. de Sitter space -- 4.2. Negative curvature: Hyperboloids -- 4.2.1. Hyperbolic space -- 4.2.2. Anti-de Sitter space -- 5. Three Dimensional Flat Lorentz Manifolds -- 5.1. Group actions -- 5.2. Transformations -- 5.3. Margulis invariant -- 5.4. Deformations of hyperbolic surfaces -- 5.5. Crooked planes -- 5.5.1. Domains in Euclidean and hyperbolic spaces -- 5.5.2. Crooked half-spaces -- References -- Connected Components of PGL(2, R)-Representation Spaces of Non-Orientable Surfaces Frederic Palesi -- 1. Introduction -- 2. The Group PSL(2, R) -- 2.1. Universal cover -- 2.2. Classification of elements -- 2.3. The commutator map -- 2.4. The square map.
3. Components for Orientable Surfaces -- 3.1. A topological invariant -- 3.2. Milnor-Wood inequality and a result of Goldman -- 3.3. Surfaces with boundary -- 3.4. Summary of the proof -- 4. Non-Orientable Surfaces -- 4.1. Non-orientable surface group -- 4.2. Second obstruction class -- 4.3. Non-orientable Euler class -- 4.4. Square map -- 4.5. General formula -- Acknowledgements -- References -- Rigidity and Flexibility of Surface Groups in Semisimple Lie Groups Inkang Kim -- 1. Introduction -- 2. Geometric Invariants -- 3. Real Zariski Tangent Space of Character Variety and Local Rigidity -- 4. Surface Group Representation -- 5. Classical Simple Lie Groups and Flexibility -- Acknowledgments -- References -- Abelian and Non-Abelian Cohomology Eugene Z. Xia -- 1. Prelude -- 2. The Representation Variety -- 3. A Reluctant Tour of Category and Groupoid -- 4. Local Functions and Their Derivatives over Rn -- 4.1. Functions -- 4.2. Exterior differentiation -- 4.3. Connections -- 4.4. The gauge group and its action -- 5. Local Functions and Their Derivatives over Cn -- 5.1. Holomorphic functions and forms -- 5.2. The holomorphic structures -- 5.3. The gauge group action I -- 5.4. Holomorphic -connections -- 5.5. The gauge group action II -- 6. Local Examples in Low Dimensions -- 6.1. Connections on an interval -- 6.2. Connections on the unit disk -- 6.3. The holomorphic construction -- 7. Interlude: Manifolds and Functions -- 8. The Cech Construction -- 8.1. Structure sheaves -- 8.2. Sheaves of modules -- 8.3. Sheaf isomorphisms -- 9. The Smooth de Rham Groupoid -- 9.1. Structure sheaf -- 9.2. Tangent, cotangent sheaves and the de Rham complex -- 9.3. Connections -- 9.4. The gauge group and its action -- 10. The Holomorphic de Rham and Dolbeault Groupoid -- 10.1. Holomorphic structures -- 10.2. The gauge group action I -- 10.3. Holomorphic -connections.
11. The Equivalence of Groupoids.
Abstract:
This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010. Aimed at graduate students in the early stages of research, the edited and refereed articles comprise an excellent introduction to the subject of the program, much of which is otherwise available only in specialized texts. Topics include hyperbolic structures on surfaces and their degenerations, applications of ping-pong lemmas in various contexts, introductions to Lorenzian and complex hyperbolic geometry, and representation varieties of surface groups into PSL(2, R) and other semi-simple Lie groups. This volume will serve as a useful portal to students and researchers in a vibrant and multi-faceted area of mathematics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View