
Biohybrid Systems : Nerves, Interfaces and Machines.
Title:
Biohybrid Systems : Nerves, Interfaces and Machines.
Author:
Jung, Ranu.
ISBN:
9783527639380
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (231 pages)
Contents:
Biohybrid Systems: Nerves, Interfaces, and Machines -- Contents -- Preface -- List of Contributors -- 1 Merging Technology with Biology -- 1.1 Introduction -- 1.2 NeuroDesign -- 1.3 The NeuroDesign Approach -- 1.4 Neuromorphic Control of a Powered Orthosis for Crutch-Free Walking -- 1.5 Frontiers of Biohybrid Systems -- 1.6 Chapter Organization -- References -- 2 Principles of Computational Neuroscience -- 2.1 Introduction -- 2.2 Some Physiology of Neurons -- 2.2.1 Membrane Potential -- 2.2.2 Membrane Equivalent Circuit -- 2.2.3 Action Potential: Generation and Propagation -- 2.3 General Formalisms in Neuronal Modeling -- 2.3.1 Conductance-Based Hodgkin-Huxley Model for Action Potential Generation -- 2.3.2 Chemical and Electrical Synaptic Inputs -- 2.3.3 Cable Theory of Neuronal Conduction and Compartmental Modeling -- 2.3.4 Calcium and Calcium-Dependent Potassium Currents -- 2.3.5 Simpli.ed Neuronal Models -- 2.4 Synaptic Coupling and Plasticity -- 2.4.1 Modeling Synaptic Plasticity -- 2.5 Computational Models of Neuronal Systems for Biohybrid Applications -- 2.6 Resources -- References -- 3 Neuromorphic Electronic Design -- 3.1 Choices for Neuromorphic Circuits: Digital versus Analogue -- 3.2 The Breadth of Neuromorphic Systems -- 3.3 The Fundamental Processing Unit: The Neuron -- 3.3.1 Conductance-Based Modeling -- 3.3.2 Compartmental Modeling -- 3.3.2.1 The Dendritic Compartment: Home to the Synapses -- 3.3.2.2 The Somatic Compartment: Spike-Based Processing and the Integrate-and-Fire Model -- 3.3.2.3 The Axonal Compartment: Address-Event Representation -- 3.4 Sensing the Environment -- 3.4.1 Vision -- 3.4.2 The Silicon Retina -- 3.4.3 Audition -- 3.4.3.1 Silicon Cochlea Modeling -- 3.5 Conclusions -- 3.6 Resources -- References -- 4 Principles of Neural Signal Processing -- 4.1 Introduction -- 4.2 Point Process Theory.
4.2.1 De.nition of a Point Process -- 4.2.2 Examples of Point Processes -- 4.2.2.1 The Poisson Process -- 4.2.2.2 Renewal Processes -- 4.2.2.3 Markov Point Processes -- 4.2.2.4 Non-Markovian Point Processes -- 4.2.3 Multiple Point Processes -- 4.3 Analyzing a Point Process -- 4.3.1 The Interval Histogram and Hazard Function -- 4.3.2 The PST Histogram -- 4.3.3 Characterizing Multiple Point Processes -- 4.4 Dynamic Neural Processing -- 4.5 Information Theory and Neural Signal Processing -- 4.5.1 Data Processing Theorem -- 4.5.2 Channel Capacity -- 4.5.3 Rate Distortion Theory -- 4.5.4 Application to Biohybrid Systems -- 4.6 Summary -- References -- 5 Dynamic Clamp in Biomimetic and Biohybrid Living-Hardware Systems -- 5.1 What is a Dynamic Clamp? -- 5.1.1 The Digital Dynamic Clamp -- 5.2 Dynamic Clamp Performance and Limitations -- 5.3 Experimental Applications of Dynamic Clamp -- 5.3.1 Example Application 1: Neuronal Gain Control -- 5.3.1.1 Synaptic Background Noise Mechanism -- 5.3.1.2 Synaptic Depression Mechanism -- 5.3.2 Example Application 2: Constructing Arti.cial Neuronal Circuits -- 5.4 Dynamic Clamp System Implementations and Future -- 5.4.1 Fundamental Considerations -- 5.4.2 Recent and Future Implementations -- 5.5 Resources -- References -- 6 Biohybrid Circuits: Nanotransducers Linking Cells and Neural Electrodes -- 6.1 Introduction to Neural-Electrical Interfaces -- 6.1.1 Typical Types of Microelectrode Arrays -- 6.1.2 Electric Circuit Model -- 6.1.3 Requirements on Electrode Materials -- 6.1.4 Applications of Nanotechnology -- 6.2 Neural Probes with Nanowires -- 6.2.1 Metallic Nanowires for Neural-Electrical Interfaces -- 6.2.2 Metal Oxide Nanowires for Neural-Electrical Interfaces -- 6.3 Microelectrode Arrays with Carbon Nano.bers -- 6.4 Microelectrode Arrays with Carbon Nanotubes.
6.4.1 Microelectrode Arrays with Random Carbon Nanotubes -- 6.4.2 Microelectrode Arrays with Vertically Aligned Carbon Nanotubes -- 6.5 Microelectrode Arrays with Conducting Polymer Nanomaterials -- 6.6 Nanoelectrodes for Neural Probes -- 6.6.1 Metal Nanoelectrodes -- 6.6.2 Carbon Nanotube-Based Nanoelectrodes -- 6.7 Summary and Future Work -- References -- 7 Hybrid Systems Analysis: Real-Time Systems for Design and Prototyping of Neural Interfaces and Prostheses -- 7.1 Introduction -- 7.2 Technology -- 7.2.1 dSPACE Boards -- 7.2.2 Introduction to Programming in Simulink -- 7.2.3 Library for Dynamic Clamp -- 7.3 Applications -- 7.3.1 Building Neuronal Models with Simulink for Real-Time Analysis -- 7.3.2 Propensity to Hazardous Dynamics of the Squid Giant Axon -- 7.4 Hybrid Systems Analysis in the Leech Heart Interneuron -- 7.4.1 Model Heart Interneuron -- 7.4.2 Hybrid Systems Analysis -- 7.5 Discussion -- References -- 8 Biomimetic Adaptive Control Algorithms -- 8.1 Introduction -- 8.1.1 Potential to Enhance Capabilities of Engineered Systems -- 8.1.2 Integrating Engineered Systems with Biological Systems -- 8.1.3 Focus on the Nervous System -- 8.2 Biomimetic Algorithms -- 8.2.1 Input/Output Models -- 8.2.2 Neurostructural Models: Models Based on Regional Neuroanatomy and Neurophysiology -- 8.2.3 Arti.cial Neural Network Models -- 8.2.4 Biophysical Models: Conductance-Based Models and Beyond -- 8.2.5 Central Pattern Generators -- 8.3 Discussion -- 8.4 Future Developments -- References -- 9 Neuromorphic Hardware for Control -- 9.1 Neuromorphic Hardware for Locomotion -- 9.1.1 A Biohybrid System for Restoring Quadrupedal Locomotion -- 9.1.2 Silicon Neural Network Design -- 9.1.3 Using the Chip for Locomotor Control -- 9.2 Neuromorphic Hardware for Audition -- 9.2.1 AER EAR Architecture -- 9.2.2 AER EAR Control Application.
9.3 Neuromorphic Hardware for Vision -- 9.3.1 The Neuromorphic Imager (Silicon Retina) -- 9.3.2 Visual Tracking -- 9.3.3 Object Tracking Application -- 9.4 Conclusions -- References -- 10 Biohybrid Systems for Neurocardiology -- 10.1 Introduction -- 10.2 Autonomic Neural Control of the Heart -- 10.2.1 Antagonistic Neural Control of the Heart -- 10.2.2 Re.exive Neural Control of the Heart -- 10.2.3 Hierarchical Neural Control of the Heart -- 10.3 Monitoring and Modulating the Autonomic Re.exive Control of the Heart -- 10.3.1 Sensing of Afferent Signals from and Efferent Signals to the Heart -- 10.3.2 Stimulation of the Parasympathetic Input to the Heart -- 10.3.2.1 Stimulation of the Cervical Vagus Nerve -- 10.3.2.2 Stimulation of the Autonomic Cardiac Innervation -- 10.3.3 Biohybrid Closed Loop Arti.cial Neural Control of the Heart -- 10.4 Conclusions -- References -- 11 Bioelectronic Sensing of Insulin Demand -- 11.1 Sensor Technologies and Cell Therapy in Diabetes: a Life-Long Debilitating Disease -- 11.2 The Biological Sensor: Function of β-Cells and Islet -- 11.3 Automated Islet Screening and Bioelectronic Sensor of Insulin Demand -- 11.4 Closed Loop Exploration In Vitro -- 11.5 Methods -- 11.5.1 Cultures and MEA -- 11.5.2 Signal Conditioning and Spike Detection -- 11.6 Results -- 11.6.1 Recordings -- 11.6.2 Adaptive Detection -- 11.7 Conclusions -- References -- Index.
Abstract:
The discipline of neurodesign is a highly interdisciplinary one, while at the same time in the process of maturing towards real-life applications. The breakthrough about to be achieved is to close the loop in communication between neural systems and electronic and mechatronic systems and actually let the nervous system adapt to the feedback from the man-made systems. To master this loop, scientists need a sound understanding of neurology, from the cellular to the systems scale, of man-made systems and how to connect the two. These scientists comprise medical scientists, neurologists and physiologists, engineers, as well as biophysicists. And they need the topics in a coherently written work with chapters building upon another.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View