Cover image for Quantum Field Theory.
Quantum Field Theory.
Title:
Quantum Field Theory.
Author:
Sadovskii, Michael V.
ISBN:
9783110270358
Personal Author:
Physical Description:
1 online resource (409 pages)
Series:
De Gruyter Studies in Mathematical Physics ; v.17

De Gruyter Studies in Mathematical Physics
Contents:
Preface -- 1 Basics of elementary particles -- 1.1 Fundamental particles -- 1.1.1 Fermions -- 1.1.2 Vector bosons -- 1.2 Fundamental interactions -- 1.3 The Standard Model and perspectives -- 2 Lagrange formalism. Symmetries and gauge fields -- 2.1 Lagrange mechanics of a particle -- 2.2 Real scalar field. Lagrange equations -- 2.3 The Noether theorem -- 2.4 Complex scalar and electromagnetic fields -- 2.5 Yang-Mills fields -- 2.6 The geometry of gauge fields -- 2.7 A realistic example - chromodynamics -- 3 Canonical quantization, symmetries in quantum field theory -- 3.1 Photons -- 3.1.1 Quantization of the electromagnetic field -- 3.1.2 Remarks on gauge invariance and Bose statistics -- 3.1.3 Vacuum fluctuations and Casimir effect -- 3.2 Bosons -- 3.2.1 Scalar particles -- 3.2.2 Truly neutral particles -- 3.2.3 CPT-transformations -- 3.2.4 Vector bosons -- 3.3 Fermions -- 3.3.1 Three-dimensional spinors -- 3.3.2 Spinors of the Lorentz group -- 3.3.3 The Dirac equation -- 3.3.4 The algebra of Dirac's matrices -- 3.3.5 Plane waves -- 3.3.6 Spin and statistics -- 3.3.7 C, P, T transformations for fermions -- 3.3.8 Bilinear forms -- 3.3.9 The neutrino -- 4 The Feynman theory of positron and elementary quantum electrodynamics -- 4.1 Nonrelativistic theory. Green's functions -- 4.2 Relativistic theory -- 4.3 Momentum representation -- 4.4 The electron in an external electromagnetic field -- 4.5 The two-particle problem -- 5 Scattering matrix -- 5.1 Scattering amplitude -- 5.2 Kinematic invariants -- 5.3 Unitarity -- 6 Invariant perturbation theory -- 6.1 Schroedinger and Heisenberg representations -- 6.2 Interaction representation -- 6.3 S-matrix expansion -- 6.4 Feynman diagrams for electron scattering in quantum electrodynamics -- 6.5 Feynman diagrams for photon scattering -- 6.6 Electron propagator.

6.7 The photon propagator -- 6.8 The Wick theorem and general diagram rules -- 7 Exact propagators and vertices -- 7.1 Field operators in the Heisenberg representation and interaction representation -- 7.2 The exact propagator of photons -- 7.3 The exact propagator of electrons -- 7.4 Vertex parts -- 7.5 Dyson equations -- 7.6 Ward identity -- 8 Some applications of quantum electrodynamics -- 8.1 Electron scattering by static charge: higher order corrections -- 8.2 The Lamb shift and the anomalous magnetic moment -- 8.3 Renormalization - how it works -- 8.4 "Running" the coupling constant -- 8.5 Annihilation of e+e~ into hadrons. Proof of the existence of quarks -- 8.6 The physical conditions for renormalization -- 8.7 The classification and elimination of divergences -- 8.8 The asymptotic behavior of a photon propagator at large momenta . -- 8.9 Relation between the "bare" and "true" charges -- 8.10 The renormalization group in QED -- 8.11 The asymptotic nature of a perturbation series -- 9 Path integrals and quantum mechanics -- 9.1 Quantum mechanics and path integrals -- 9.2 Perturbation theory -- 9.3 Functional derivatives -- 9.4 Some properties of functional integrals -- 10 Functional integrals: scalars and spinors -- 10.1 Generating the functional for scalar fields -- 10.2 Functional integration -- 10.3 Free particle Green's functions -- 10.4 Generating the functional for interacting fields -- 10.5 f4 theory -- 10.6 The generating functional for connected diagrams -- 10.7 Self-energy and vertex functions -- 10.8 The theory of critical phenomena -- 10.9 Functional methods for fermions -- 10.10 Propagators and gauge conditions in QED -- 11 Functional integrals: gauge fields -- 11.1 Non-Abelian gauge fields and Faddeev-Popov quantization -- 11.2 Feynman diagrams for non-Abelian theory.

12 The Weinberg-Salam model -- 12.1 Spontaneous symmetry-breaking and the Goldstone theorem -- 12.2 Gauge fields and the Higgs phenomenon -- 12.3 Yang-Mills fields and spontaneous symmetry-breaking -- 12.4 The Weinberg-Salam model -- 13 Renormalization -- 13.1 Divergences in f4 -- 13.2 Dimensional regularization of f4-theory -- 13.3 Renormalization of f4-theory -- 13.4 The renormalization group -- 13.5 Asymptotic freedom of the Yang-Mills theory -- 13.6 "Running" coupling constants and the "grand unification" -- 14 Nonperturbative approaches -- 14.1 The lattice field theory -- 14.2 Effective potential and loop expansion -- 14.3 Instantons in quantum mechanics -- 14.4 Instantons and the unstable vacuum in field theory -- 14.5 The Lipatov asymptotics of a perturbation series -- 14.6 The end of the "zero-charge" story? -- Bibliography -- Index.
Abstract:
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: