
Interface Between Quantum Information and Statistical Physics.
Title:
Interface Between Quantum Information and Statistical Physics.
Author:
Nakahara, Mikio.
ISBN:
9789814425285
Personal Author:
Physical Description:
1 online resource (278 pages)
Series:
Kinki University Series on Quantum Computing ; v.7
Kinki University Series on Quantum Computing
Contents:
CONTENTS -- Preface -- Symposium -- List of Participants -- Organizing Committee -- Bosons in an Optical Lattice with a Synthetic Magnetic Field K. Kasamatsu -- 1. Introduction -- 2. Formulation -- 2.1. Bose-Hubbard model -- 2.2. Frustrated XY model -- 2.3. Hamiltonian for hard-core bosons in an effective magnetic field -- 2.3.1. CP1 variable and path-integral representation -- 3. Ground state -- 4. Phase structures at finite T -- 4.1. Density fluctuation -- 4.2. The finite temperature phase transition -- 4.2.1. f=0 -- 4.2.2. f=1/2 -- 4.2.3. f=2/5 -- 5. Summary -- Acknowledgments -- Appendix A. Reduction to the Josephson junction regime -- Appendix A.1. Determination of Jij -- Appendix A.2. Estimation of the parameters -- Appendix B. Relation between the CP1 model and the other models -- Appendix C. Symmetry of the gauged CP1 model -- References -- Quantum Simulation Using Exciton-Polaritons and their Applications Toward Accelerated Optimization Problem Search T. Byrnes, K. Yan, K. Kusudo, M. Fraser and Y. Yamamoto -- 1. Introduction -- 2. Quantum Simulation of the Hubbard Model -- 3. Exciton-Polaritons -- 4. Quantum Simulation with Exciton-Polaritons -- 4.1. Excited state condensation in one dimensional periodic lattice potentials -- 4.2. Mott transition of EPs and indirect excitons in a periodic potential -- 5. Accelerated Optimization Problem Search Using BECs -- 5.1. The bosonic Ising model -- 5.2. Performance of the bosonic Ising model -- 6. Summary and Conclusions -- Acknowledgments -- References -- Quantum Simulation Using Ultracold Atoms in Optical Lattices S. Sugawa, S. Taie, R. Yamazaki and Y. Takahashi -- 1. Introduction -- 1.1. Quantum simulation of Hubbard model -- 1.2. Why quantum simulation? -- 1.3. Extending the system -- 2. An approach using ytterbum -- 3. Production of quantum degenerate Yb atoms.
4. Superfluid-Mott insulator transition -- 5. Strongly-correlated phases in Bose-Fermi mixtures -- 5.1. Hamiltonian of the system -- 5.2. Repulsively interacting Bose-Fermi system -- 5.3. Attractively interacting Bose-Fermi system -- 5.4. Thermodynamics -- 6. Prospect -- Acknowledgement -- References -- Universality of Integrable Model: Baxter's T-Q Equation, SU(N)/SU(2)N-3 Correspondence and -Deformed Seiberg- Witten Prepotential T.-S. Tai -- 1. Introduction and summary -- 2. XXX spin chain -- 2.1. Baxter's T-Q equation -- 2.2. More detail -- 3. XXX Gaudin model -- 3.1. RHS of Fig. 3 -- 3.2. LHS of Fig. 3 -- 3.2.1. Free-field representation -- 4. Application and discussion -- 4.1. Discussion -- 4.2. XYZ Gaudin model -- Acknowledgments -- Appendix A -- Definition of wn -- References -- Exact Analysis of Correlation Functions of the XXZ Chain T. Deguchi, K. Motegi and J. Sato -- 1. Introduction -- 2. Spin-1/2 XXZ chain -- 3. Algebraic Bethe ansatz -- 4. Steps to calculate correlation functions -- 5. Integrable higher spin XXZ chain -- 6. Conclusion -- Acknowledgments -- Appendix A: Evaluation of (42) -- References -- Classical Analogue of Weak Value in Stochastic Process H. Tomita -- 1. Introduction -- 2. Self-adjoint form of stochastic master equation -- 3. Two-time conditional probability -- 4. Stochastic model of classical Ising spins -- 5. Extension of TTCP to a density matrix -- 6. Summary and discussions -- Acknowledgment -- References -- Scaling of Entanglement Entropy and Hyperbolic Geometry H. Matsueda -- 1. Introduction -- 2. Entanglement Entropy and Singular Value Decomposition -- 3. Scaling of Entanglement Entropy -- 3.1. Historical roots of anomalous entropy scaling -- 3.2. General coodinate transformation and horizon -- 3.3. Area law and its logarithmic violation at criticality -- 3.4. Fermi surfaces and entropy.
3.5. Topological entanglement entropy -- 3.6. Entanglement support of matrix product state -- 4. Holographic Entanglement Entropy: Connection between Scaling and Hyperbolic Geometry -- 4.1. Anti-de Sitter space -- 4.2. Killing equation and conformal invariance -- 4.3. Geometric interpretation of entanglement entropy -- 5. Tensor Networks and Extra Dimension -- 5.1. From matrix product to tensor product -- 5.2. Tree tensor networks and multiscale entanglement renormalization ansatz: Hierarchical tensor network -- 6. Compactification and Entropy -- 6.1. Bulk/edge correspondence and compactification -- 6.2. Field theory with extra dimension -- 6.3. VBS/CFT correspondence -- 6.4. Suzuki-Trotter decomposition -- 6.5. Entropy scaling, quantum-classical correspondence, and hyperbolic geometry hidden in image processing based on SVD -- 7. Summary -- References -- From Classical Neural Networks to Quantum Neural Networks B. Tirozzi -- 1. The Hopfield model -- 2. Estimates of the observables for quantum spin systems -- 3. Multi-qubit systems and quantum neural networks -- 4. Estimates of the ground state energy of classical neural networks -- 4.1. Ising ferromagnetic model -- 4.2. Hopfield model with a finite number of patterns -- 4.3. Hopfield model with finite capacity -- 4.4. Quantum neural networks -- 5. Experiments and Simulations -- 5.1. Experiment -- 5.2. Simulations -- 6. Open Problems -- References -- Analysis of Quantum Monte Carlo Dynamics in Infinite-range Ising Spin Systems: Theory and Its Possible Applications J. Inoue -- 1. Introduction -- 2. The model system and formulation -- 2.1. The Glauber dynamics and its transition probability -- 2.2. The master equation -- 2.3. From master equation to deterministic flows -- 2.3.1. The static approximation -- 2.3.2. Classical limit -- 2.4. Dynamics and steady state.
2.5. On the validity of static approximation -- 3. The quantum Hopfield model -- 3.1. The classical system -- 3.2. The quantum system -- 3.2.1. The master equation -- 3.2.2. The classical and zero-temperature limits -- 3.3. Limit cycle solution for asymmetric connections -- 3.3.1. Result for just only two embedded patterns -- 4. Image restoration -- 5. Concluding remarks -- Acknowledgement -- References -- A Method to Control Order of Phase Transition: Invisible States in Discrete Spin Models R. Tamura, S. Tanaka and N. Kawashima -- 1. Introduction -- 2. Nature of the Phase Transition -- 3. Preceding Models -- 3.1. Blume-Capel model -- 3.2. Wajnflasz-Pick model -- 4. Potts Model with Invisible States -- 4.1. Mean-field analysis -- 4.2. Monte Carlo simulation -- 4.3. Another representation of the Potts model with invisible states -- 5. Conclusion and Future Perspective -- Acknowledgements -- References -- Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems S. Tanaka and R. Tamura -- 1. Introduction -- 2. Implementation Methods of Quantum Annealing -- 2.1. Quantum Monte Carlo method -- 2.2. Real-time dynamics -- 3. Quantum Field Response of Frustrated Ising Systems -- 3.1. Order by disorder effect in fully frustrated systems -- 3.2. Decorated bond systems -- 4. Conclusion and Future Perspective -- Acknowledgement -- References.
Abstract:
This book is a collection of contributions to the Symposium on Interface between Quantum Information and Statistical Physics held at Kinki University in November 2011. Subjects of the symposium include quantum adiabatic computing, quantum simulator using bosons, classical statistical physics, among others. Contributions to this book are prepared in a self-contained manner so that a reader with a modest background may understand the subjects.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View