
Global Navigation Satellite Systems, Inertial Navigation, and Integration.
Title:
Global Navigation Satellite Systems, Inertial Navigation, and Integration.
Author:
Grewal, Mohinder S.
ISBN:
9781118523506
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (603 pages)
Contents:
Cover -- Title page -- Copyright page -- Contents -- Preface -- Acknowledgments -- Acronyms and Abbreviations -- 1: Introduction -- 1.1 Navigation -- 1.1.1 Navigation-Related Technologies -- 1.1.2 Navigation Modes -- GNSS Overview -- 1.2.1 GPS -- 1.2.2 Global Orbiting Navigation Satellite System (GLONASS) -- 1.2.3 Galileo -- 1.2.4 Compass (BeiDou-2) -- 1.3 Inertial Navigation Overview -- 1.3.1 Theoretical Foundations -- 1.3.2 Inertial Sensor Technology -- 1.4 GNSS/INS Integration Overview -- 1.4.1 The Role of Kalman Filtering -- 1.4.2 Implementation -- 1.4.3 Applications -- Problem -- References -- 2: Fundamentals of Satellite Navigation Systems -- 2.1 Navigation Systems Considered -- 2.1.1 Systems Other than GNSS -- 2.1.2 Comparison Criteria -- 2.2 Satellite Navigation -- 2.2.1 Satellite Orbits -- 2.2.2 Navigation Solution (Two-Dimensional Example) -- 2.2.3 Satellite Selection and Dilution of Precision (DOP) -- 2.2.4 Example Calculation of DOPS -- 2.3 Time and GPS -- 2.3.1 Coordinated Universal Time (UTC) Generation -- 2.3.2 GPS System Time -- 2.3.3 Receiver Computation of UTC -- 2.4 Example: User Position Calculations with No Errors -- 2.4.1 User Position Calculations -- 2.4.2 User Velocity Calculations -- Problem -- References -- 3: Fundamentals of Inertial Navigation -- 3.1 Chapter Focus -- 3.2 Basic Terminology -- 3.3 Inertial Sensor Error Models -- 3.3.1 Zero-Mean Random Errors -- 3.3.2 Fixed-Pattern Errors -- 3.3.3 Sensor Error Stability -- 3.4 Sensor Calibration and Compensation -- 3.4.1 Sensor Biases, Scale Factors, and Misalignments -- 3.4.2 Other Calibration Parameters -- 3.4.3 Calibration Parameter Instabilities -- 3.4.4 Auxilliary Sensors before GNSS -- 3.4.5 Sensor Performance Ranges -- 3.5 Earth Models -- 3.5.1 Terrestrial Navigation Coordinates -- 3.5.2 Earth Rotation -- 3.5.3 Gravity Models -- 3.6 Hardware Implementations.
3.6.1 Gimbaled Implementations -- 3.6.2 Floated Implementation -- 3.6.3 Carouseling and Indexing -- 3.6.4 Strapdown Systems -- 3.6.5 Strapdown Carouseling and Indexing -- 3.7 Software Implementations -- 3.7.1 Example in One Dimension -- 3.7.2 Initialization in Nine Dimensions -- 3.7.3 Gimbal Attitude Implementations -- 3.7.4 Gimbaled Navigation Implementation -- 3.7.5 Strapdown Attitude Implementations -- 3.7.6 Strapdown Navigation Implementation -- 3.7.7 Navigation Computer and Software Requirements -- 3.8 INS Performance Standards -- 3.8.1 Free Inertial Operation -- 3.8.2 INS Performance Metrics -- 3.8.3 Performance Standards -- 3.9 Testing and Evaluation -- 3.9.1 Laboratory Testing -- 3.9.2 Field Testing -- 3.10 Summary -- Problem -- References -- 4: GNSS Signal Structure, Characteristics, and Information Utilization -- 4.1 Legacy GPS Signal Components, Purposes, and Properties -- 4.1.1 Mathematical Signal Models for the Legacy GPS Signals -- 4.1.2 Navigation Data Format -- 4.1.3 GPS Satellite Position Calculations -- 4.1.4 C/A-Code and Its Properties -- 4.1.5 P(Y)-Code and Its Properties -- 4.1.6 L1 and L2 Carriers -- 4.1.7 Transmitted Power Levels -- 4.1.8 Free Space and Other Loss Factors -- 4.1.9 Received Signal Power -- 4.2 Modernization of GPS -- 4.2.1 Areas to Benefit from Modernization -- 4.2.2 Elements of the Modernized GPS -- 4.2.3 L2 Civil Signal (L2C) -- 4.2.4 L5 Signal -- 4.2.5 M-Code -- 4.2.6 L1C Signal -- 4.2.7 GPS Satellite Blocks -- 4.2.8 GPS III -- 4.3 GLONASS Signal Structure and Characteristics -- 4.3.1 Frequency Division Multiple Access (FDMA) Signals -- 4.3.2 CDMA Modernization -- 4.4 Galileo -- 4.4.1 Constellation and Levels of Services -- 4.4.2 Navigation Data and Signals -- 4.5 Compass/BD -- 4.6 QZSS -- Problem -- References -- 5: GNSS Antenna Design and Analysis -- 5.1 Applications.
5.2 GNSS Antenna Performance Characteristics -- 5.2.1 Size and Cost -- 5.2.2 Frequency and Bandwidth Coverage -- 5.2.3 Radiation Pattern Characteristics -- 5.2.4 Antenna Polarization and Axial Ratio -- 5.2.5 Directivity, Efficiency, and Gain of a GNSS Antenna -- 5.2.6 Antenna Impedance, Standing Wave Ratio, and Return Loss -- 5.2.7 Antenna Bandwidth -- 5.2.8 Antenna Noise Figure -- 5.3 Computational Electromagnetic Models (CEMs) for GNSS Antenna Design -- 5.4 GNSS Antenna Technologies -- 5.4.1 Dipole-Based GNSS Antennas -- 5.4.2 GNSS Patch Antennas -- 5.4.3 Survey-Grade/Reference GNSS Antennas -- 5.5 Principles of Adaptable Phased-Array Antennas -- 5.5.1 Digital Beamforming Adaptive Antenna Array Formulations -- 5.5.2 STAP -- 5.5.3 SFAP -- 5.5.4 Configurations of Adaptable Phased-Array Antennas -- 5.5.5 Relative Merits of Adaptable Phased-Array Antennas -- 5.6 Application Calibration/Compensation Considerations -- Problem -- References -- 6: GNSS Receiver Design and Analysis -- 6.1 Receiver Design Choices -- 6.1.1 Global Navigation Satellite System (GNSS) Application to be Supported -- 6.1.2 Single or Multifrequency Support -- 6.1.3 Number of Channels -- 6.1.4 Code Selections -- 6.1.5 Differential Capability -- 6.1.6 Aiding Inputs -- 6.2 Receiver Architecture -- 6.2.1 Radio Frequency (RF) Front End -- 6.2.2 Frequency Down-Conversion and IF Amplification -- 6.2.3 Analog-to-Digital Conversion and Automatic Gain Control -- 6.2.4 Baseband Signal Processing -- 6.3 Signal Acquisition and Tracking -- 6.3.1 Hypothesize about the User Location -- 6.3.2 Hypothesize about Which GNSS Satellites Are Visible -- 6.3.3 Signal Doppler Estimation -- 6.3.4 Search for Signal in Frequency and Code Phase -- 6.3.5 Signal Detection and Confirmation -- 6.3.6 Code Tracking Loop -- 6.3.7 Carrier Phase Tracking Loops -- 6.3.8 Bit Synchronization -- 6.3.9 Data Bit Demodulation.
6.4 Extraction of Information for User Solution -- 6.4.1 Signal Transmission Time Information -- 6.4.2 Ephemeris Data for Satellite Position and Velocity -- 6.4.3 Pseudorange Measurements Formulation Using Code Phase -- 6.4.4 Measurements Using Carrier Phase -- 6.4.5 Carrier Doppler Measurement -- 6.4.6 Integrated Doppler Measurements -- 6.5 Theoretical Considerations in Pseudorange, Carrier Phase, and Frequency Estimations -- 6.5.1 Theoretical Error Bounds for Code Phase Measurement -- 6.5.2 Theoretical Error Bounds for Carrier Phase Measurements -- 6.5.3 Theoretical Error Bounds for Frequency Measurement -- 6.6 High-Sensitivity A-GPS Systems -- 6.6.1 How Assisting Data Improves Receiver Performance -- 6.6.2 Factors Affecting High-Sensitivity Receivers -- 6.7 Software-Defined Radio (SDR) Approach -- 6.8 Pseudolite Considerations -- Problem -- References -- 7: GNSS DATA ERRORS -- 7.1 Data Errors -- 7.2 Ionospheric Propagation Errors -- 7.2.1 Ionospheric Delay Model -- 7.2.2 GNSS SBAS Ionospheric Algorithms -- 7.3 Tropospheric Propagation Errors -- 7.4 The Multipath Problem -- 7.4.1 How Multipath Causes Ranging Errors -- 7.5 Methods of Multipath Mitigation -- 7.5.1 Spatial Processing Techniques -- 7.5.2 Time-Domain Processing -- 7.5.3 Multipath Mitigation Technology (MMT) Technology -- 7.5.4 Performance of Time-Domain Methods -- 7.6 Theoretical Limits for Multipath Mitigation -- 7.6.1 Estimation-Theoretic Methods -- 7.6.2 Minimum Mean-Squared Error (MMSE) Estimator -- 7.6.3 Multipath Modeling Errors -- 7.7 Ephemeris Data Errors -- 7.8 Onboard Clock Errors -- 7.9 Receiver Clock Errors -- 7.10 SA Errors -- 7.11 Error Budgets -- Problem -- References -- 8: Differential GNSS -- 8.1 Introduction -- 8.2 Descriptions of Local-Area Differential GNSS (LADGNSS), Wide-Area Differential GNSS (WADGNSS), and Space-Based Augmentation System (SBAS) -- 8.2.1 LADGNSS.
8.2.2 WADGNSS -- 8.2.3 SBAS -- 8.3 GEO with L1L5 Signals -- 8.3.1 GEO Uplink Subsystem Type 1 (GUST) Control Loop Overview -- 8.4 GUS Clock Steering Algorithm -- 8.4.1 Receiver Clock Error Determination -- 8.4.2 Clock Steering Control Law -- 8.5 GEO Orbit Determination (OD) -- 8.5.1 OD Covariance Analysis -- 8.6 Ground-Based Augmentation System (GBAS) -- 8.6.1 Local-Area Augmentation System (LAAS) -- 8.6.2 Joint Precision Approach and Landing System (JPALS) -- 8.6.3 Enhanced Long-Range Navigation (eLoran) -- 8.7 Measurement/Relative-Based DGNSS -- 8.7.1 Code Differential Measurements -- 8.7.2 Carrier Phase Differential Measurements -- 8.7.3 Positioning Using Double-Difference Measurements -- 8.8 GNSS Precise Point Positioning Services and Products -- 8.8.1 The International GNSS Service (IGS) -- 8.8.2 Continuously Operating Reference Stations (CORSs) -- 8.8.3 GPS Inferred Positioning System (GIPSY) and Orbit Analysis Simulation Software (OASIS) -- 8.8.4 Australia's Online GPS Processing System (AUPOS) -- 8.8.5 Scripps Coordinate Update Tool (SCOUT) -- 8.8.6 The Online Positioning User Service (OPUS) -- Problem -- References -- 9: GNSS and GEO Signal Integrity -- 9.1 Introduction -- 9.1.1 Range Comparison Method -- 9.1.2 Least-Squares Method -- 9.1.3 Parity Method -- 9.2 SBAS and GBAS Integrity Design -- 9.2.1 SBAS Error Sources and Integrity Threats -- 9.2.2 GNSS-Associated Errors -- 9.2.3 GEO-Associated Errors -- 9.2.4 Receiver and Measurement Processing Errors -- 9.2.5 Estimation Errors -- 9.2.6 Integrity-Bound Associated Errors -- 9.2.7 GEO Uplink Errors -- 9.2.8 Mitigation of Integrity Threats -- 9.3 SBAS Example -- 9.4 Summary -- 9.5 Future: GIC -- Problem -- References -- 10: Kalman Filtering -- 10.1 Introduction -- 10.1.1 What Is a Kalman Filter? -- 10.1.2 How Does It Work? -- 10.1.3 How Is It Used? -- 10.2 Kalman Filter Correction Update.
10.2.1 Deriving the Kalman Gain.
Abstract:
An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS (tightly and loosely coupled), modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. The Third Edition includes: Updates on the upgrades in existing GNSS and other systems currently under development Expanded coverage of basic principles of antenna design and practical antenna design solutions Expanded coverage of basic principles of receiver design and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver Expanded coverage of inertial navigation, its history, its technology, and the mathematical models and methods used in its implementation Derivations of dynamic models for the propagation of inertial navigation errors, including the effects of drifting sensor compensation parameters Greatly expanded coverage of GNSS/INS integration, including derivation of a
unified GNSS/INS integration model, its MATLAB® implementations, and performance evaluation under simulated dynamic conditions The companion website includes updated background material; additional MATLAB scripts for simulating GNSS-only and integrated GNSS/INS navigation; satellite position determination; calculation of ionosphere delays; and dilution of precision.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View