Cover image for Separation and Purification Technologies in Biorefineries.
Separation and Purification Technologies in Biorefineries.
Title:
Separation and Purification Technologies in Biorefineries.
Author:
Ramaswamy, Shri.
ISBN:
9781118493489
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (610 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 Overview of Biomass Conversion Processes and Separation and Purification Technologies in Biorefineries -- 1.1 Introduction -- 1.2 Biochemical conversion biorefineries -- 1.3 Thermo-chemical and other chemical conversion biorefineries -- 1.3.1 Thermo-chemical conversion biorefineries -- 1.3.1.1 Example: Biomass to gasoline process -- 1.3.2 Other chemical conversion biorefineries -- 1.3.2.1 Levulinic acid -- 1.3.2.2 Glycerol -- 1.3.2.3 Sorbitol -- 1.3.2.4 Xylitol/Arabinitol -- 1.3.2.5 Example: Conversion of oil-containing biomass for biodiesel -- 1.4 Integrated lignocellulose biorefineries -- 1.5 Separation and purification processes -- 1.5.1 Equilibrium-based separation processes -- 1.5.1.1 Absorption -- 1.5.1.2 Distillation -- 1.5.1.3 Liquid-liquid extraction -- 1.5.1.4 Supercritical fluid extraction -- 1.5.2 Affinity-based separation -- 1.5.2.1 Simulated moving-bed chromatography -- 1.5.3 Membrane separation -- 1.5.4 Solid-liquid separation -- 1.5.4.1 Conventional filtration -- 1.5.4.2 Solid-liquid extraction -- 1.5.4.3 Precipitation and crystallization -- 1.5.5 Reaction-separation systems for process intensification -- 1.5.5.1 Reaction-membrane separation systems -- 1.5.5.2 Extractive fermentation (Reaction-LLE systems) -- 1.5.5.3 Reactive distillation -- 1.5.5.4 Reactive absorption -- 1.6 Summary -- References -- Part II Equilibrium-Based Separation Technologies -- Chapter 2 Distillation -- 2.1 Introduction -- 2.2 Ordinary distillation -- 2.2.1 Thermodynamic fundamental -- 2.2.2 Distillation equipment -- 2.2.3 Application in biorefineries -- 2.3 Azeotropic distillation -- 2.3.1 Introduction -- 2.3.2 Example in biorefineries -- 2.3.3 Industrial challenges -- 2.4 Extractive distillation.

2.4.1 Introduction -- 2.4.2 Extractive distillation with liquid solvents -- 2.4.3 Extractive distillation with solid salts -- 2.4.4 Extractive distillation with the mixture of liquid solvent and solid salt -- 2.4.5 Extractive distillation with ionic liquids -- 2.4.6 Examples in biorefineries -- 2.5 Molecular distillation -- 2.5.1 Introduction -- 2.5.2 Examples in biorefineries -- 2.5.3 Mathematical models -- 2.6 Comparisons of different distillation processes -- 2.7 Conclusions and future trends -- Acknowledgement -- References -- Chapter 3 Liquid-Liquid Extraction (LLE) -- 3.1 Introduction to LLE: Literature review and recent developments -- 3.2 Fundamental principles of LLE -- 3.3 Categories of LLE design -- 3.4 Equipment for the LLE process -- 3.4.1 Criteria -- 3.4.2 Types of extractors -- 3.4.3 Issues with current extractors -- 3.5 Applications in biorefineries -- 3.5.1 Ethanol -- 3.5.2 Biodiesel -- 3.5.3 Carboxylic acids -- 3.5.4 Other biorefinery processes -- 3.6 The future development of LLE for the biorefinery setting -- References -- Chapter 4 Supercritical Fluid Extraction -- 4.1 Introduction -- 4.2 Principles of supercritical fluids -- 4.3 Market and industrial needs -- 4.4 Design and modeling of the process -- 4.4.1 Film theory -- 4.4.2 Penetration theory -- 4.5 Specific examples in biorefineries -- 4.5.1 Sugar/starch as a raw material -- 4.5.2 Supercritical extraction of vegetable oil -- 4.5.3 Supercritical extraction of lignocellulose biomass -- 4.5.4 Supercritical extraction of microalgae -- 4.6 Economic importance and industrial challenges -- 4.7 Conclusions and future trends -- References -- Part III Affinity-Based Separation Technologies -- Chapter 5 Adsorption -- 5.1 Introduction -- 5.2 Essential principles of adsorption -- 5.2.1 Adsorption isotherms -- 5.2.1.1 Freundlich isotherm.

5.2.1.2 Langmuir isotherm -- 5.2.1.3 BET isotherm -- 5.2.1.4 Ideal adsorbed solution (IAS) theory -- 5.2.2 Types of adsorption isotherm -- 5.2.3 Adsorption hysteresis -- 5.2.4 Heat of adsorption -- 5.3 Adsorbent selection criteria -- 5.4 Commercial and new adsorbents and their properties -- 5.4.1 Activated carbon -- 5.4.2 Silica gel -- 5.4.3 Zeolites and molecular sieves -- 5.4.4 Activated alumina -- 5.4.5 Polymeric resins -- 5.4.6 Bio-based adsorbents -- 5.4.7 Metal organic frameworks (MOF) -- 5.5 Adsorption separation processes -- 5.5.1 Adsorbate concentration -- 5.5.2 Modes of adsorber operation -- 5.5.3 Adsorbent regeneration methods -- 5.5.3.1 Selection of regeneration method -- 5.5.3.2 Temperature swing adsorption (TSA) -- 5.5.3.3 Pressure swing adsorption (PSA) -- 5.6 Adsorber modeling -- 5.7 Application of adsorption in biorefineries -- 5.7.1 Examples of adsorption systems for removal of fermentation inhibitors from lignocellulosic biomass hydrolysate -- 5.7.2 Examples of adsorption systems for recovery of biofuels from dilute aqueous fermentation broth -- 5.7.2.1 In situ recovery of 1-butanol -- 5.7.2.2 Recovery of other prospective biofuel compounds -- 5.7.2.3 Ethanol dehydration -- 5.7.2.4 Biodiesel purification -- 5.8 A case study: Recovery of 1-butanol from ABE fermentation broth using TSA -- 5.8.1 Introduction -- 5.8.2 Adsorbent in extrudate form -- 5.8.3 Adsorption kinetics -- 5.8.4 Adsorption of 1-butanol by CBV28014 extrudates in a packed-bed column -- 5.8.5 Desorption -- 5.8.6 Equilibrium isotherms -- 5.8.7 Simulation of breakthrough curves -- 5.8.8 Summary from case study -- 5.9 Research needs and prospects -- 5.10 Conclusions -- Acknowledgement -- References -- Chapter 6 Ion Exchange -- 6.1 Introduction.

6.1.1 Ion exchangers: Operational conditions-sorbent selection -- 6.2 Essential principles -- 6.2.1 Properties of ion exchangers -- 6.3 Ion-exchange market and industrial needs -- 6.4 Commercial ion-exchange resins -- 6.4.1 Strong acid cation resins -- 6.4.2 Weak acid cation resins -- 6.4.3 Strong base anion resins -- 6.4.4 Weak base anion resins -- 6.5 Specific examples in biorefineries -- 6.5.1 Water softening -- 6.5.2 Total removal of electrolytes from water -- 6.5.3 Removal of nitrates in water -- 6.5.4 Applications in the food industry -- 6.5.5 Applications in chromatography -- 6.5.6 Special applications in water treatment -- 6.5.7 Metal recovery -- 6.5.8 Separation of isotopes or ions -- 6.5.9 Applications of zeolites in ion-exchange processes -- 6.5.10 Applications of ion exchange in catalytic processes -- 6.5.11 Recent applications of ion exchange in lignocellulosic bioefineries -- 6.5.12 Recent applications of ion exchange in biodiesel bioefineries -- 6.6 Conclusions and future trends -- References -- Chapter 7 Simulated Moving-Bed Technology for Biorefinery Applications -- 7.1 Introduction -- 7.1.1 Principles of separations in batch chromatography and SMB -- 7.1.2 The advantages of SMB -- 7.1.3 A brief history of SMB and its applications -- 7.1.4 Barriers to SMB applications -- 7.2 Essential SMB design principles and tools -- 7.2.1 Knowledge-driven design -- 7.2.2 Design and optimization for multicomponent separation -- 7.2.2.1 Standing-wave analysis (SWA) -- 7.2.2.2 Splitting strategies for multicomponent SMB systems -- 7.2.2.3 Comprehensive optimization with standing-wave (COSW) -- 7.2.2.4 Other design methodologies -- 7.2.3 SMB chromatographic simulation -- 7.2.4 SMB equipment -- 7.2.5 Advanced SMB operations -- 7.2.5.1 Simulated moving-bed reactors -- 7.2.6 SMB commercial manufacturers.

7.3 Simulated moving-bed technology in biorefineries -- 7.3.1 SMB separation of sugar hydrolysate and concentrated sulfuric acid -- 7.3.2 Five-zone SMB for sugar isolation from dilute-acid hydrolysate -- 7.3.3 Simulated moving-bed purification of lactic acid in fermentation broth -- 7.3.4 SMB purification of glycerol by-product from biodiesel processing -- 7.4 Conclusions and future trends -- References -- Part IV Membrane Separation -- Chapter 8 Microfiltration, Ultrafiltration and Diafiltration -- 8.1 Introduction -- 8.1.1 Applications of microfiltration -- 8.1.2 Applications of ultrafiltration -- 8.2 Membrane plant design -- 8.2.1 Single-stage membrane plants -- 8.2.2 Multistage membrane plants -- 8.2.3 Membranes -- 8.2.4 Membrane modules -- 8.2.5 Design and operation of membrane plants -- 8.3 Economic considerations -- 8.3.1 Capital cost -- 8.3.2 Operating costs -- 8.4 Process design -- 8.4.1 Flux during concentration -- 8.4.2 Retention -- 8.4.3 Recovery and purity -- 8.5 Operating parameters -- 8.5.1 Pressure -- 8.5.2 Cross-flow velocity -- 8.5.3 Temperature -- 8.5.4 Concentration -- 8.5.5 Influence of concentration polarization and critical flux on retention -- 8.6 Diafiltration -- 8.7 Fouling and cleaning -- 8.7.1 Fouling -- 8.7.2 Pretreatment -- 8.7.3 Cleaning -- 8.8 Conclusions and future trends -- References -- Chapter 9 Nanofiltration -- 9.1 Introduction -- 9.2 Nanofiltration market and industrial needs -- 9.3 Fundamental principles -- 9.3.1 Pressure and flux -- 9.3.2 Retention and fractionation -- 9.3.3 Influence of filtration parameters -- 9.4 Design and simulation -- 9.4.1 Water permeation -- 9.4.2 Solute retention -- 9.4.2.1 Retention of organic components -- 9.4.2.2 Retention of inorganic components -- 9.5 Membrane materials and properties -- 9.5.1 Structure of NF membranes.

9.5.2 Hydrophilic and hydrophobic characteristics.
Abstract:
Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a

series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: