Cover image for Radio Engineering : From Software Radio to Cognitive Radio.
Radio Engineering : From Software Radio to Cognitive Radio.
Title:
Radio Engineering : From Software Radio to Cognitive Radio.
Author:
Palicot, Jacques.
ISBN:
9781118602225
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (352 pages)
Series:
Iste
Contents:
Cover -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Acknowledgments -- Introduction -- PART 1. COGNITIVE RADIO -- Chapter 1. Introduction to Cognitive Radio -- 1.1. Joseph Mitola's cognitive radio -- 1.1.1. Definitions -- 1.1.2. Joseph Mitola's vision of cognitive cycle -- 1.2. Positioning -- 1.2.1. Convergence between networks -- 1.2.2. Generalized mobility without service interruption -- 1.2.3. Distribution of intelligence -- 1.3. Spectrum management -- 1.3.1. Current situation -- 1.3.2. Spectrum sharing -- 1.3.2.1. Horizontal and vertical sharing -- 1.3.2.2. Spectrum pooling -- 1.3.2.3. Spectrum underlay technique -- 1.3.2.4. Spectrum overlay technique -- 1.4. A broader vision of CR -- 1.4.1. Taking into account the global environment -- 1.4.2. The sensorial radio bubble for CR -- 1.5. Difficulties of the cognitive cycle -- Chapter 2. Cognitive Terminals Toward Cognitive Networks -- 2.1. Introduction -- 2.2. Intelligent terminal -- 2.2.1. Description -- 2.2.2. Advantages -- 2.2.3. Limitations -- 2.3. Intelligent networks -- 2.3.1. Description -- 2.3.2. Advantages -- 2.3.3. Limitations -- 2.4. Toward a compromise -- 2.4.1. Impact of the number of users -- 2.4.2. Impact of spectral dimension -- 2.5. Conclusion -- Chapter 3. Cognitive Radio Sensors -- 3.1. Lower layer sensors -- 3.1.1. Hole detection sensor -- 3.1.1.1. Matched filtering -- 3.1.1.2. Detection -- 3.1.1.3. Energy detection -- 3.1.1.4. Collaborative detection -- 3.1.2. Other sensors -- 3.1.2.1. Recognition of channel bandwidth -- 3.1.2.2. Single- and multicarrier detection -- 3.1.2.3. Detection of spread spectrum type -- 3.1.2.4. Other sensors of the lower layer -- 3.2. Intermediate layer sensors -- 3.2.1. Introduction -- 3.2.2. Cognitive pilot channel -- 3.2.3. Localization-based identification -- 3.2.3.1. Geographical location-based systems synthesis.

3.2.3.2. Rights of database use and update -- 3.2.4. Blind standard recognition sensor -- 3.2.4.1. General description -- 3.2.4.2. Stage 1: band adaptation -- 3.2.4.3. Stage 2: analysis with lower layer sensors -- 3.2.4.4. Stage 3: fusion -- 3.2.5. Comparison of abovementioned three sensors for standard recognition -- 3.3. Higher layer sensors -- 3.3.1. Introduction -- 3.3.2. Potential sensors -- 3.3.3. Video sensor and compression -- 3.3.3.1. Active appearance models -- 3.3.3.2. A real scenario -- 3.3.3.3. Different stages -- 3.4. Conclusion -- Chapter 4. Decision Making and Learning -- 4.1. Introduction -- 4.2. CR equipment: decision and/or learning -- 4.2.1. Cognitive agent -- 4.2.2. Conflicting objectives -- 4.2.3. A modeling part in all approaches -- 4.2.4. Decision making and learning: network equipment -- 4.3. Decision design space -- 4.3.1. Decision constraints -- 4.3.1.1. Environmental constraints -- 4.3.1.2. User constraints -- 4.3.1.3. Equipment capacity constraints -- 4.3.2. Cognitive radio design space -- 4.4. Decision making and learning from the equipment's perspective -- 4.4.1. A priori uncertainty measurements -- 4.4.2. Bayesian techniques -- 4.4.3. Reinforcement techniques: general case -- 4.4.3.1. Bellman's equation -- 4.4.3.2. Bellman's equation to reinforcement techniques -- 4.4.3.3. Value update -- 4.4.3.4. Iteration algorithm for policies -- 4.4.3.5. Q-learning -- 4.4.4. Reinforcement techniques: slot machine problem -- 4.4.4.1. An introductory example: analogy with a slot machine -- 4.4.4.2. Mathematical formalism and fundamental results -- 4.4.4.3. Upper confidence bound (UCB) algorithms -- 4.4.4.4. UCB1 algorithm -- 4.4.4.5. UCBV algorithm -- 4.4.4.6. Application example: opportunistic spectrum access -- 4.4.5. Artificial intelligence -- 4.5. Decision making and learning from network perspective: game theory.

4.5.1. Active or passive decision -- 4.5.2. Techniques based on game theory -- 4.5.2.1. Cournot's competition and best response -- 4.5.2.2. Fictitious play -- 4.5.2.3. Reinforcement strategy -- 4.5.2.4. Boltzmann-Gibbs and coupled learning -- 4.5.2.5. Imitation -- 4.5.2.6. Learning in stochastic games -- 4.6. Brief state of the art: classification of methods for dynamic configuration adaptation -- 4.6.1. The expert approach -- 4.6.2. Exploration-based decision making: genetic algorithms -- 4.6.3. Learning approaches: joint exploration and exploitation -- 4.7. Conclusion -- Chapter 5. Cognitive Cycle Management -- 5.1. Introduction -- 5.2. Cognitive radio equipment -- 5.2.1. Composition of cognitive radio equipment -- 5.2.2. A design proposal for CR equipment: HDCRAM -- 5.2.3. HDCRAM and cognitive cycle -- 5.2.4. HDCRAM levels -- 5.2.4.1. Level L3 -- 5.2.4.2. Level L2 -- 5.2.4.3. Level L1 -- 5.2.5. Deployment on a hardware platform -- 5.2.6. Examples of intelligent decisions -- 5.3. High-level design approach -- 5.3.1. Unified modeling language (UML) design approach -- 5.3.2. Metamodeling -- 5.3.3. An executable metamodel -- 5.3.4. Simulator of cognitive radio architecture -- 5.4. HDCRAM's interfaces (APIs) -- 5.4.1. Organization of classes of HDCRAM's metamodel -- 5.4.1.1. Parent classes -- 5.4.1.2. Child classes -- 5.4.2. ReM APIs -- 5.4.3. CRM's APIs -- 5.4.4. Operators' APIs -- 5.4.5. Example of deployment scenario in CR equipment -- 5.5. Conclusion -- PART 2. SOFTWARE RADIO AS SUPPORT TECHNOLOGY -- Chapter 6. Introduction to Software Radio -- 6.1. Introduction -- 6.2. Generalities -- 6.2.1. Definitions -- 6.2.1.1. Ideal software radio -- 6.2.1.2. Software-defined radio -- 6.2.1.3. Other interesting classifications -- 6.2.2. Interests and aftermath for telecom players -- 6.2.2.1. Designer of terminals and access points.

6.2.2.2. Operator and service provider -- 6.2.2.3. End user -- 6.3. Major organizations of software radio -- 6.3.1. Forums -- 6.3.1.1. SDR Forum/Wireless Innovation Forum -- 6.3.1.2. OMG -- 6.3.2. Standardization organizations -- 6.3.3. Regulators -- 6.3.4. Some commercial and academic projects -- 6.3.5. Military projects -- 6.4. Hardware architectures -- 6.4.1. Software-defined radio (ideal) -- 6.4.2. Software-defined radio -- 6.4.2.1. Direct conversion -- 6.4.2.2. SR with low IF -- 6.4.2.3. Undersampling -- 6.4.2.4. Other architectures -- 6.5. Conclusion -- Chapter 7. Transmitter/Receiver Analog Front End -- 7.1. Introduction -- 7.2. Antennas -- 7.2.1. Introduction -- 7.2.2. For base stations -- 7.2.2.1. Constraints on spatial discrimination -- 7.2.2.2. Constraints on the spectral discrimination -- 7.2.2.3. Sample topologies and concepts -- 7.2.3. For mobile terminals -- 7.2.3.1. Constraints -- 7.2.3.2. Sample topologies and concepts -- 7.3. Nonlinear amplification -- 7.3.1. Introduction -- 7.3.2. Characteristics of a power amplifier -- 7.3.2.1. AM/AM and AM/PM characteristics -- 7.3.2.2. The efficiency -- 7.3.2.3. Input and output back-offs -- 7.3.2.4. Memory effect -- 7.3.3. Merit criteria of a power amplifier -- 7.3.3.1. Intermodulation -- 7.3.3.2. The C/I ratio -- 7.3.3.3. Interception point -- 7.3.3.4. Noise power ratio (NPR) -- 7.3.3.5. Adjacent channel power ratio (ACPR) -- 7.3.3.6. Error vector magnitude (EVM) -- 7.3.4. Modeling of a memoryless power amplifier -- 7.3.4.1. Input-output relationship of an amplifier -- 7.3.4.2. The polynomial model -- 7.3.4.3. The Saleh model -- 7.3.4.4. The Rapp model -- 7.3.5. Modeling of a power amplifier with memory -- 7.3.5.1. The Saleh model -- 7.3.5.2. The Volterra model -- 7.3.5.3. The Wiener-Hammerstein model -- 7.3.5.4. The polynomial model with memory -- 7.4. Converters -- 7.4.1. Introduction.

7.4.1.1. Requirements for the software radio -- 7.4.2. Characteristics of the converter -- 7.4.2.1. Quantization noise -- 7.4.2.2. Thermal noise -- 7.4.2.3. Sampling phase noise -- 7.4.2.4. Measuring spectral purity: the spurious free dynamic range (SFDR) -- 7.4.2.5. SFDR improvement by adding noise: the dither -- 7.4.2.6. Switched capacitor converters: the KT/C noise -- 7.4.2.7. Signal dynamics -- 7.4.2.8. Blockers -- 7.4.2.9. Linearity constraints -- 7.4.2.10. Jammers -- 7.4.2.11. Bandwidth and slew rate -- 7.4.2.12. Consumption constraints: the figure of merit (FOM) -- 7.4.2.13. Constraints on digital ports -- 7.4.3. Digital to analog conversion architectures -- 7.4.3.1. Current source of DAC architectures -- 7.4.3.2. Switched capacitor DAC architecture -- 7.4.3.3. Evolution of the DAC -- 7.4.4. Analog to digital conversion architecture -- 7.4.4.1. Flash structure -- 7.4.4.2. Folding ADC -- 7.4.4.3. Pipeline structure -- 7.4.4.4. Successive approximation architecture -- 7.4.4.5. Sigma-delta architecture -- 7.4.4.6. Evolution of the ADC analog-to-digital converters -- 7.4.5. Summarizing the converters -- 7.5. Conclusion -- Chapter 8. Transmitter/Receiver Digital Front End -- 8.1. Theoretical principles -- 8.1.1. The universal transmitter/receiver -- 8.2. DFE functions -- 8.2.1. I/Q transposition in digital domain -- 8.2.2. Sample rate conversion -- 8.2.2.1. Frequency conversion by decimation filter -- 8.2.3. Channelization -- 8.2.4. DFE from a practical point of view -- 8.2.4.1. Low-pass filtering -- 8.2.4.2. Cheapest solution in terms of computational cost -- 8.2.5. Multichannel DFE -- 8.3. Synchronization -- 8.3.1. Introduction -- 8.3.2. Symbol timing recovery -- 8.3.2.1. Timing phase recovery -- 8.3.2.2. Phase error detector -- 8.3.2.3. Phase-locked loop (PLL) -- 8.3.3. Carrier phase recovery -- 8.3.3.1. DA estimation -- 8.3.3.2. NDA estimation.

8.3.3.3. Phase recovery.
Abstract:
Software radio ideally provides the opportunity to communicate with any radio communication standard by modifying only the software, without any modification to hardware components. However, taking into account the static behavior of current communications protocols, the spectrum efficiency optimization, and flexibility, the radio domain has become an important factor. From this thinking appeared the cognitive radio paradigm. This evolution is today inescapable in the modern radio communication world. It provides an autonomous behavior to the equipment and therefore the adaptation of communication parameters to better match their needs. This collective work provides engineers, researchers and radio designers with the necessary information from mathematical analysis and hardware architectures to design methodology and tools, running platforms and standardization in order to understand this new cognitive radio domain.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: