Cover image for Greener Fischer-Tropsch Processes for Fuels and Feedstocks.
Greener Fischer-Tropsch Processes for Fuels and Feedstocks.
Title:
Greener Fischer-Tropsch Processes for Fuels and Feedstocks.
Author:
Maitlis, Peter M.
ISBN:
9783527656868
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (392 pages)
Contents:
Greener Fischer-Tropsch Processes: for Fuels and Feedstocks -- Contents -- Preface -- List of Contributors -- Part One: Introduction -- 1 What is Fischer-Tropsch? -- Synopsis -- 1.1 Feedstocks for Fuel and for Chemicals Manufacture -- 1.2 The Problems -- 1.3 Fuels for Transportation -- 1.3.1 Internal Combustion Engines -- 1.3.2 Electric Cars -- 1.3.3 Hydrogen-Powered Vehicles -- 1.4 Feedstocks for the Chemical Industry -- 1.5 Sustainability and Renewables: Alternatives to Fossil Fuels -- 1.5.1 Biofuels -- 1.5.2 Other Renewable but Nonbio Fuels -- 1.6 The Way Forward -- 1.7 XTL and the Fischer-Tropsch Process (FTP) -- 1.7.1 Some History -- 1.7.2 FT Technology: An Overview -- 1.7.3 What Goes on? -- 1.7.4 CO Hydrogenation: Basic Thermodynamics and Kinetics -- 1.8 Alternatives to Fischer-Tropsch -- References -- Part Two: Industrial and Economics Aspects -- 2 Syngas: The Basis of Fischer-Tropsch -- Synopsis -- 2.1 Syngas as Feedstock -- 2.2 Routes to Syngas: XTL (X = Gas, Coal, Biomass, and Waste) -- 2.2.1 Starting from Gas (GTL) -- 2.2.2 Starting from Solid Feeds (CTL, BTL, and WTL) -- 2.3 Water-Gas Shift Reaction (WGSR) -- 2.4 Synthesis Gas Cleanup -- 2.5 Thermal and Carbon Efficiency -- 2.6 The XTL Gas Loop -- 2.6.1 Gas Loop for HTFT Synthesis with a Coal Gasifier -- 2.6.2 Gas Loop for HTFT Synthesis with a Natural Gas Feed -- 2.6.3 Gas Loop for LTFT Cobalt Catalyst with Natural Gas Feed -- 2.7 CO2 Production and CO2 as Feedstock -- References -- 3 Fischer-Tropsch Technology -- Synopsis -- 3.1 Introduction -- 3.1.1 FT Catalyst -- 3.1.2 Operating Conditions -- 3.1.3 FT Reactor Types -- 3.2 Industrially Applied FT Technologies -- 3.2.1 German Normal-Pressure Synthesis -- 3.2.2 German Medium-Pressure Synthesis -- 3.2.3 Hydrocol -- 3.2.4 Arbeitsgemeinschaft Ruhrchemie-Lurgi (Arge) -- 3.2.5 Kellogg Synthol and Sasol Synthol.

3.2.6 Shell Middle Distillate Synthesis (SMDS) -- 3.2.7 Sasol Advanced Synthol (SAS) -- 3.2.8 Iron Sasol Slurry Bed Process (Fe-SSBP) -- 3.2.9 Cobalt Sasol Slurry Bed Process (Co-SSBP) -- 3.2.10 Statoil Cobalt-Based Slurry Bubble Column -- 3.2.11 High-Temperature Slurry Fischer-Tropsch Process (HTSFTP) -- 3.3 FT Catalysts -- 3.4 Requirements for Industrial Catalysts -- 3.4.1 Activity -- 3.4.2 Selectivity -- 3.4.3 Stability -- 3.4.4 Other Factors -- 3.5 FT Reactors -- 3.5.1 Tube-Cooled Fixed Bed Reactors -- 3.5.2 Multitubular Fixed Bed Reactors -- 3.5.3 Circulating and Fixed Fluidized Bed Reactors -- 3.5.4 Slurry Bed Reactors -- 3.6 Selecting the Right FT Technology -- 3.6.1 Syngas Composition -- 3.6.2 Syngas Purity -- 3.6.3 Impact of Catalyst Deactivation -- 3.6.4 Catalyst Replacement Strategy -- 3.6.5 Turndown Ratio and Robustness -- 3.6.6 Steam Quality -- 3.6.7 Syncrude Composition -- 3.6.8 Syncrude Quality -- 3.7 Selecting the FT Operating Conditions -- 3.8 Selecting the FT Catalyst Type -- 3.8.1 Active Metal -- 3.8.2 Catalyst Complexity -- 3.8.3 Catalyst Particle Size -- 3.9 Other Factors That Affect FT Technology Selection -- 3.9.1 Particle Size -- 3.9.2 Reaction Phase -- 3.9.3 Catalyst Lifetime -- 3.9.4 Volumetric Reactor Productivity -- 3.9.5 Other Considerations -- References -- 4 What Can We Do with Fischer-Tropsch Products? -- Synopsis -- 4.1 Introduction -- 4.2 Composition of Fischer-Tropsch Syncrude -- 4.2.1 Carbon Number Distribution: Anderson-Schulz-Flory (ASF) Plots -- 4.2.2 Hydrocarbon Composition -- 4.2.3 Oxygenate Composition -- 4.3 Syncrude Recovery after Fischer-Tropsch Synthesis -- 4.3.1 Stepwise Syncrude Cooling and Recovery -- 4.3.2 Oxygenate Partitioning -- 4.3.3 Oxygenate Recovery from the Aqueous Product -- 4.4 Fuel Products from Fischer-Tropsch Syncrude -- 4.4.1 Synthetic Natural Gas -- 4.4.2 Liquefied Petroleum Gas.

4.4.3 Motor Gasoline -- 4.4.4 Jet Fuel -- 4.4.5 Diesel Fuel -- 4.5 Lubricants from Fischer-Tropsch Syncrude -- 4.6 Petrochemical Products from Fischer-Tropsch Syncrude -- 4.6.1 Alkane-Based Petrochemicals -- 4.6.2 Alkene-Based Petrochemicals -- 4.6.3 Aromatic-Based Petrochemicals -- 4.6.4 Oxygenate-Based Petrochemicals -- References -- 5 Industrial Case Studies -- Synopsis -- 5.1 Introduction -- 5.2 A Brief History of Industrial FT Development -- 5.2.1 Early Developments -- 5.2.2 Postwar Transfer of FT Technology across Oceans -- 5.2.3 Industrial Developments in South Africa -- 5.2.4 Industrial Developments by Shell -- 5.2.5 Developments in China -- 5.2.6 Other International Developments -- 5.3 Industrial FT Facilities -- 5.3.1 Sasol 1 Facility -- 5.3.2 Sasol Synfuels Facility -- 5.3.3 Shell Middle Distillate Synthesis (SMDS) Facilities -- 5.3.4 PetroSA GTL Facility -- 5.3.5 Oryx and Escravos GTL Facilities -- 5.4 Perspectives on Industrial Developments -- 5.4.1 Further Investment in Industrial FT Facilities -- 5.4.2 Technology Lessons from Industrial Practice -- 5.4.3 Future of Small-Scale Industrial Facilities -- References -- 6 Other Industrially Important Syngas Reactions -- Synopsis -- 6.1 Survey of CO Hydrogenation Reactions -- 6.2 Syngas to Methanol -- 6.2.1 Introduction -- 6.2.2 Synthesis Reaction -- 6.2.3 Mechanism -- 6.2.4 Catalyst Deactivation -- 6.2.5 Uses of Methanol -- 6.3 Syngas to Dimethyl Ether (DME) -- 6.3.1 DME Uses -- 6.4 Syngas to Ethanol -- 6.4.1 Introduction -- 6.4.2 Direct Processes -- 6.5 Syngas to Acetic Acid -- 6.5.1 Acetic Acid Processes -- 6.5.2 Mechanisms -- 6.5.3 Catalyst Deactivation -- 6.6 Higher Hydrocarbons and Higher Oxygenates -- 6.6.1 Isobutene and Isobutanol -- 6.7 Hydroformylation -- 6.8 Other Reactions Based on Syngas -- 6.8.1 Hydroxy and Alkoxy Carbonylations -- 6.8.2 Methyl Formate.

6.8.3 Dimethyl Carbonate (DMC) -- 6.8.4 Ether Gasoline Additives -- 6.8.5 Hydrogenation -- References -- 7 Fischer-Tropsch Process Economics -- Synopsis -- 7.1 Introduction and Background -- 7.2 Market Outlook (Natural Gas) -- 7.3 Capital Cost -- 7.4 Operating Costs -- 7.5 Revenues -- 7.6 Economics and Sensitivity Analysis -- 7.6.1 Sensitivity to GTL Plant Capacity (Economy of Scale Effects) -- 7.6.2 Sensitivity to Feedstock Costs -- 7.6.3 Sensitivity to GTL Project Cost (Learning Curve Effect) -- 7.6.4 Sensitivity to Tax Regime -- 7.6.5 Sensitivity to GTL Diesel Valorization -- 7.6.6 Sensitivity to Crude Oil Price Scenario -- 7.6.7 Effects of Key Parameters on GTL Plant Profitability -- References -- Part Three: Fundamental Aspects -- 8 Preparation of Iron FT Catalysts -- Synopsis -- 8.1 Introduction -- 8.2 High-Temperature Fischer-Tropsch (HTFT) Catalysts -- 8.3 Low-Temperature Catalysts -- 8.4 Individual Steps -- 8.4.1 Oxidation of Fe2+ -- 8.4.2 Precipitation of Fe3+ -- 8.4.3 Precipitate Washing -- 8.4.4 An Environmentally Greener Process -- 8.4.5 Chemical Promoters -- 8.4.6 Copper Promoters -- 8.4.7 Phase Changes -- 8.4.8 Other Iron Catalysts -- References -- 9 Cobalt FT Catalysts -- Synopsis -- 9.1 Introduction -- 9.2 Early German Work -- 9.3 Support Preparation -- 9.3.1 Alumina Supports -- 9.3.2 Silica Supports -- 9.3.3 Titanium Dioxide Support -- 9.4 Addition of Cobalt and Promoters -- 9.5 Calcination -- 9.6 Reduction -- 9.7 Catalyst Transfer -- 9.8 Catalyst Attrition -- 9.9 Addendum Recent Literature Summary -- References -- 10 Other FT Catalysts -- Synopsis -- 10.1 Introduction -- 10.2 Ni Catalysts -- 10.3 Ruthenium Catalysts -- 10.3.1 Historical -- 10.3.2 Studies on Ru Catalysts -- 10.4 Rhodium Catalysts -- 10.5 Other Catalysts and Promoters -- References -- 11 Surface Science Studies Related to Fischer-Tropsch Reactions -- Synopsis.

11.1 Introduction: Surfaces in Catalysts and Catalytic Cycles -- 11.2 Heterogeneous Catalyst Characterization -- 11.2.1 Diffraction Methods -- 11.2.2 Spectroscopic Methods -- 11.2.3 Microscopy Techniques -- 11.2.4 Molecular Metal Complexes as Models -- 11.3 Species Detected on Surfaces -- 11.3.1 Carbon Monoxide on Surfaces {CO} -- 11.3.2 Activation of CO -- 11.3.3 Transformations of {CO} -- 11.3.4 Hydrogen on Surfaces {H2} and {H} -- 11.3.5 Transformations of {H} -- 11.3.6 Reactions of {CO} and {H} -- 11.4 Theoretical Calculations -- References -- 12 Mechanistic Studies Related to the Fischer-Tropsch Hydrocarbon Synthesis and Some Cognate Processes -- Synopsis -- 12.1 Introduction -- 12.1.1 A Brief Background: Classical Views of the Mechanism -- 12.2 Basic FT Reaction: Dissociative and Associative Paths -- 12.2.1 Dissociative Activation of CO -- 12.2.2 Associative Activation -- 12.2.3 Dual Mechanism Approaches -- 12.3 Some Mechanisms-Related Experimental Studies -- 12.3.1 The Original Work of Fischer and Tropsch -- 12.3.2 Laboratory-Scale Experimental Results -- 12.3.3 Probe Experiments and Isotopic Labeling -- 12.3.3.1 13C Labeling -- 12.3.3.2 14C Labeling -- 12.4 Current Views on the Mechanisms of the FT-S -- 12.4.1 The First Steps: H2 and CO Activation -- 12.4.2 Organometallic Models for CO Activation -- 12.5 Now: Toward a Consensus? -- 12.5.1 Routes Based on a Dissociative (Carbide) Mechanism -- 12.5.2 Routes Based on an Associative (or Oxygenate) Mechanism -- 12.6 Dual FT Mechanisms -- 12.6.1.1 Dual FT Mechanisms: The Nonpolar Path -- 12.6.2 Dual FT Mechanisms: The Ionic/Dipolar Path -- 12.7 Cognate Processes: The Formation of Oxygenates in FT-S -- 12.8 Dual Mechanisms Summary -- 12.9 Improvements by Catalyst Modifications -- 12.10 Catalyst Activation and Deactivation Processes -- 12.11 Desorption and Displacement Effects.

12.12 Directions for Future Researches.
Abstract:
How can we use our carbon-based resources in the most responsible manner? How can we most efficiently transform natural gas, coal, or biomass into diesel, jet fuel or gasoline to drive our machines? The Big Questions today are energyrelated, and the Fischer-Tropsch process provides industrially tested solutions. This book offers a comprehensive and up-to-date overview of the Fischer-Tropsch process, from the basic science and engineering to commercial issues. It covers industrial, economic, environmental, and fundamental aspects, with a specific focus on 'green' concepts such as sustainability, process improvement, waste-reduction, and environmental care. The result is a practical reference for researchers, engineers, and financial analysts working in the energy sector, who are interested in carbon conversion, fuel processing or synthetic fuel technologies. It is also an ideal introductory book on the Fischer-Tropsch process for graduate courses in chemistry and chemical engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: