Cover image for Polymer Adhesion, Friction, and Lubrication.
Polymer Adhesion, Friction, and Lubrication.
Title:
Polymer Adhesion, Friction, and Lubrication.
Author:
Zeng, Hongbo.
ISBN:
9781118505137
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (707 pages)
Contents:
Cover -- Title page -- Copyright page -- Contents -- Preface -- Contributors -- 1: Fundamentals of Surface Adhesion, Friction, and Lubrication -- 1.1 Introduction -- 1.2 Basic Concepts -- 1.2.1 Intermolecular and Surface Forces -- 1.2.2 Surface Energy -- 1.3 Adhesion and Contact Mechanics -- 1.3.1 Hertz Model -- 1.3.2 Johnson-Kendall-Roberts Model -- 1.3.3 Derjaguin-Muller-Toporov Model -- 1.3.4 Maugis Model -- 1.3.5 Indentation -- 1.3.6 Effect of Environmental Conditions on Adhesion -- 1.3.7 Adhesion of Rough Surfaces -- 1.3.8 Adhesion Hysteresis -- 1.4 Friction -- 1.4.1 Amontons' Laws of Friction -- 1.4.2 The Basic Models of Friction -- 1.4.3 Stick-Slip Friction -- 1.4.4 Directionality of Friction -- 1.5 Rolling Friction -- 1.6 Lubrication -- 1.7 Wear -- 1.8 Real Contact Area -- 1.9 Modern Tools in Tribology -- 1.9.1 X-Ray Photoelectron Spectroscopy -- 1.9.2 Scanning Electron Microscopy -- 1.9.3 Infrared Spectroscopy -- 1.9.4 Optical Tweezers or Optical Trapping -- 1.9.5 Atomic Force Microscope (AFM) -- 1.9.6 Surface Forces Apparatus (SFA) -- 1.10 Computer Simulations in Tribology -- Acknowledgment -- References -- 2: Adhesion and Tribological Characteristics of Ion-Containing Polymer Brushes Prepared by Controlled Radical Polymerization -- 2.1 Introduction -- 2.2 Controlled Synthesis of Ion-Containing Polymer Brushes -- 2.3 Wettability of Polyelectrolyte Brushes -- 2.4 Adhesion and Detachment between Polyelectrolyte Brushes -- 2.5 Water Lubrication and Frictional Properties of Polyelectrolyte Brushes -- 2.6 Conclusions -- References -- 3: Lubrication and Wear Protection of Natural (Bio)Systems -- 3.1 Introduction -- 3.1.1 What Makes Biolubrication Unique? -- 3.1.2 Theory of Friction -- 3.2 Boundary Lubrication -- 3.2.1 Dry/Contact Lubrication -- 3.2.2 Thin Film Boundary Lubrication -- 3.2.3 Hydration Layers.

3.2.4 Intermediate Boundary Lubrication -- 3.2.5 Thick Film Boundary Lubrication -- 3.2.6 Hyaluronic Acid (HA) Interfacial Layer -- 3.3 Fluid Film Lubrication -- 3.3.1 Elastohydrodynamic Lubrication in Biological Systems -- 3.3.2 Weeping Lubrication -- 3.4 Multimodal Lubrication -- 3.4.1 Mixed Lubrication and the "Stribeck Curve" -- 3.4.2 Adaptive Lubrication -- 3.4.3 Mechanically Controlled Adaptive Lubrication -- 3.5 Wear -- 3.5.1 How Are Friction and Wear Related? -- 3.5.2 Characterization, Measurement, and Evaluation of Wear -- 3.5.3 Biological Strategies for Controlling Wear -- 3.5.4 Wear of Soft, Compliant Biological Materials -- 3.5.5 Controlling Wear in Hard Biological Materials: Self-Sharpening Mechanism in Rodent Teeth -- 3.6 Biomimetic and Engineering Approaches of Biolubrication -- 3.6.1 Hydrogel Coatings as Artificial Cartilage Materials -- 3.6.2 Mimicking Synovial Fluid Lubricating Properties: Polyelectrolytes Lubrication -- 3.6.3 Superlubrication by Aggrecan Mimics: End-Grafted Polymers and the Brush Paradigm -- 3.6.4 Perspectives and Future Research Avenues -- Acknowledgment -- References -- 4: Polymer Brushes and Surface Forces -- 4.1 Introduction -- 4.2 Some Generic Properties of Polymer Brushes -- 4.3 Sliding of High-Tg Polymer Brushes: The Semidilute to Vitrified Transition -- 4.4 Sliding Mechanism and Relaxation of Sheared Brushes -- 4.5 Compression, Shear, and Relaxation of Melt Brushes -- 4.6 Shear Swelling of Polymer Brushes -- 4.7 Telechelic Brushes -- 4.8 Polyelectrolyte Brushes in Aqueous Media -- 4.8.1 Charged Brushes: The Symmetric Case -- 4.8.2 Charged Brushes: The Asymmetric Case -- 4.9 Zwitterionic Polymer Brushes -- 4.10 Summary -- Acknowledgments -- Appendix: Self-Regulation and Velocity Dependence of Brush-Brush Friction -- References -- 5: Adhesion, Wetting, and Superhydrophobicity of Polymeric Surfaces.

5.1 Introduction -- 5.2 Adhesion between Polymeric Surfaces -- 5.2.1 Van der Waals Forces -- 5.2.2 Capillary Forces -- 5.2.3 Electrostatic Double-Layer Forces -- 5.2.4 Solvation Forces -- 5.2.5 Mechanical Contact Force -- 5.3 Wetting of Polymers -- 5.3.1 Definition of Contact Angle: Young's Equation -- 5.3.2 Rough Surfaces: Wenzel's Model -- 5.3.3 Heterogeneous Surfaces: Cassie-Baxter Model -- 5.4 Fabrication of Superhydrophobic Polymeric Materials -- 5.4.1 Replication of Natural Surfaces -- 5.4.2 Molding or Template-Assisted Techniques -- 5.4.3 Roughening by Introduction of Nanoparticles -- 5.4.4 Surface Modification by Low Surface Energy Materials -- 5.4.5 Electrospinning -- 5.4.6 Solution Method -- 5.4.7 Plasma, Electron, and Laser Treatment -- 5.5 Surface Characterization -- 5.5.1 Surface Chemistry -- 5.5.2 Wetting Property -- 5.5.3 Microscopy Techniques -- 5.6 Conclusions -- Acknowledgments -- References -- 6: Marine Bioadhesion on Polymer Surfaces and Strategies for Its Prevention -- 6.1 Introduction -- 6.2 Protein Adsorption on Solid Surfaces -- 6.2.1 Protein-Repellant Surfaces -- 6.3 Polymer Coatings Resistant to Marine Biofouling -- 6.3.1 Hydrophobic Marine Fouling-Release Coatings: The Role of Surface Energy and Modulus -- 6.3.2 Hydrophilic Coatings -- 6.3.3 Amphiphilic Coatings -- 6.3.4 Self-Polishing Coatings -- 6.3.5 Coatings with Topographically Patterned Surfaces -- 6.3.6 Antifouling Surfaces with Surface-Immobilized Enzymes and Bioactive Fouling-Deterrent Molecules -- 6.4 Conclusion -- Acknowledgments -- References -- 7: Molecular Engineering of Peptides for Cellular Adhesion Control -- 7.1 Introduction: Cells, Biomacromolecules, and Lipidated Peptides -- 7.2 Biomaterials -- 7.3 Chemistry Tools -- 7.3.1 Bioconjugate Chemistry -- 7.3.2 Solid-Phase Peptide Synthesis.

7.4 Self-Assembly of Lipidated Peptides: Peptide Amphiphiles Engineering -- 7.4.1 Double-Tailed Peptide Amphiphile -- 7.4.2 Single-Tailed (Monoalkylated) Peptide Amphiphiles -- 7.5 Biomimetic Peptide Amphiphile Surface Engineering Case Studies -- 7.5.1 Melanoma Cell Adhesion on a Lipid Bilayer Incorporating RGD -- 7.5.2 Adhesion of α5β1 Receptors to Biomimetic Substrates -- 7.5.3 Human Umbilical Vein Endothelial Cell Adhesion -- 7.5.4 Cell Adhesion on a Polymerized Monolayer -- 7.5.5 Cell Adhesion and Growth on Patterned Lipid Bilayers -- 7.5.6 Cell Adhesion on Metallic Surfaces -- 7.5.7 Bone Marrow Mononuclear Cell Adhesion -- 7.5.8 Nanofibrous Peptide Amphiphile Gels for Endothelial Cell Adhesion -- 7.6 Neural Stem Cells on Surfaces: A Deeper Look at Cell Adhesion Control -- 7.6.1 The Stem Cell Microenvironment -- 7.6.2 Neural Stem Cells on Lipid Bilayers -- 7.6.3 Vesicle Fusion and Bilayer Characterization -- 7.6.4 Initial NSC Adhesion on Peptide Surfaces -- 7.6.5 NSC Proliferation on Peptide Surfaces -- 7.6.6 NSC Differentiation on Peptide Surfaces -- 7.7 Overview of Molecular Engineering Designs for Cellular Adhesion -- 7.7.1 Self-Assembled Peptide Surfaces -- 7.7.2 Cell Adhesion Molecule RGD Surface Density Control: An Example -- 7.7.3 Cell Adhesion Molecule Accessibility (Exposure) Control -- 7.8 Conclusion -- Acknowledgments -- References -- 8: A Microcosm of Wet Adhesion: Dissecting Protein Interactions in Mussel Attachment Plaques -- 8.1 Introduction -- 8.2 Mussel Adhesion -- 8.2.1 Marine Surfaces -- 8.2.2 Byssal Attachment -- 8.2.3 Direct Observation of Plaque Attachment -- 8.3 Surface Forces Apparatus -- 8.3.1 Making the SFA Relevant to Biological Environments -- 8.4 Assessing Protein Contributions by SFA -- 8.4.1 Asymmetric/Symmetric Configurations -- 8.4.2 Protein-Surface Interactions -- 8.4.3 Protein-Protein Interactions.

8.5 Conclusions -- 8.5.1 Insights about Protein Interactions -- 8.5.2 Effects of DOPA Reactivity on Adhesion -- 8.5.3 Mussel Foot Controls the Microenvironment around DOPA -- 8.5.4 Other Factors Influencing Adhesion -- Acknowledgments -- References -- 9: Gecko-Inspired Polymer Adhesives -- 9.1 Introduction -- 9.1.1 A Note on Terminology -- 9.2 Biological Inspirations -- 9.2.1 Key Discoveries in Gecko Adhesion -- 9.2.2 Structured Adhesion in Other Animals -- 9.2.3 Summary of Observed Principles of Micro-Structured Adhesives -- 9.3 Mechanical Principles of Structured Adhesive Surfaces -- 9.3.1 Adhesion -- 9.3.2 Friction -- 9.4 Gecko-Inspired Adhesives and Their Fabrication -- 9.4.1 Macro- and Microscale Fibers -- 9.4.2 Nanoscale Fibers -- 9.4.3 Hierarchical Fibers -- 9.5 Applications of Bioinspired Adhesives -- 9.5.1 Robotics -- 9.5.2 Safety and Medical Devices -- 9.6 Future Directions: Unsolved Challenges and Possible Applications -- References -- 10: Adhesion and Friction Mechanisms of Polymer Surfaces and Thin Films -- 10.1 Introduction -- 10.2 Adhesion and Contact Mechanics -- 10.2.1 Surface Energies -- 10.2.2 Advances in Contact and Adhesion Mechanics -- 10.3 Adhesion of Glassy Polymers and Elastomers -- 10.3.1 Adhesion Interface: Chain Pull-Out -- 10.3.2 Glassy Polymers: Transition from Chain Pull-Out, Chain Scission to Crazing -- 10.3.3 Adhesion Promoters for Polymer Systems -- 10.4 Experimental Advances in Adhesion and Friction between Polymer Surfaces and Thin Films -- 10.5 Adhesion and Fracture Mechanism of Polymer Thin Films: from Liquid to Solid-Like Behaviors -- 10.6 Adhesion and Friction between Rough Polymer Surfaces -- 10.7 Friction between Immiscible Polymer Melts -- 10.8 Hydrophobic Interactions between Polymer Surfaces -- 10.9 Perspectives and Future Research Avenues -- Acknowledgment -- References.

11: Recent Advances in Rubber Friction in the Context of Tire Traction.
Abstract:
Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: