
Proton Exchange Membrane Fuel Cells Modeling.
Title:
Proton Exchange Membrane Fuel Cells Modeling.
Author:
Gao, Fengge.
ISBN:
9781118566374
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (184 pages)
Series:
Iste
Contents:
Cover -- Proton Exchange Membrane Fuel Cells Modeling -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- Nomenclature -- PART 1: STATE OF THE ART: OF FUEL CELLS MODELING -- Chapter 1. General Introduction -- 1.1. What is a fuel cell? -- 1.2. Types of fuel cells -- 1.2.1. Proton exchange membrane fuel cell (PEMFC, PEFC) -- 1.2.2. Alkaline fuel cells (AFC) -- 1.2.3. Phosphoric acid fuel cells (PAFC) -- 1.2.4. Molten carbonate fuel cells (MCFC) -- 1.2.5. Solid oxide fuel cells (SOFC) -- 1.2.6. Direct methanol fuel cells (DMFC) -- Chapter 2. PEMFC Structure -- 2.1. Bipolar plates -- 2.2. Membrane electrode assembly -- 2.2.1. Electrodes -- 2.2.2. Membrane -- Chapter 3. Why Model a Fuel Cell? -- 3.1. Advantages of modeling and simulation -- 3.2. Complex system modeling methods -- 3.2.1. Behavior description -- 3.2.2. Behavior explanation -- 3.3. Modeling goals -- 3.3.1. Scientific understanding -- 3.3.2. Technological development -- 3.3.3. System control -- Chapter 4. How Can a Fuel Cell be Modeled? -- 4.1. Space dimension: 0D, 1D, 2D, 3D -- 4.2. Temporal behavior: static or dynamic -- 4.3. Type: analytical, semi-empirical, empirical -- 4.4. Modeled areas: stack, single cell, individual layer -- 4.5. Modeled phenomena -- 4.5.1. Domains: electrical (electrochemical), fluidic, thermal -- 4.5.2. Individual layer phenomena -- Chapter 5. Literature Models Synthesis -- 5.1. 50 models published in the literature -- 5.2. Model classification -- PART 2: MODELING OF THE PROTON EXCHANGE MEMBRANE FUEL CELL -- Chapter 6. Model Structural and Functional Approaches -- Chapter 7. Stack-Level Modeling -- 7.1. Electrical domain -- 7.1.1. Cell voltage multiplication -- 7.1.2. Individual cell voltage sum -- 7.2. Fluidic domain -- 7.2.1. Static equilibrium of the stack's fluid flows -- 7.2.2. Dynamic equilibrium of the stack's fluid flow.
7.2.3. Expressions for gas flow rates at the channel inlets and outlets -- 7.3. Thermal domain -- 7.3.1. Dynamic energy balance -- Chapter 8. Cell-Level Modeling (Membrane-Electrode Assembly, MEA) -- 8.1. Electrical domain -- 8.1.1. Thermodynamic voltage of a cell [BLU 07] -- 8.1.2. Voltage drop due to activation loss -- 8.1.3. Voltage drop due to internal ohmic loss (membrane + plate) -- 8.1.4. Voltage drop due to concentration losses (mass transport limitation) -- 8.1.5. Dynamic effect of double layer capacity -- 8.2. Fluidic domain -- 8.2.1. Static or dynamic mass balance -- 8.2.2. Pressure loss in the global feeding channels (manifolds) -- 8.3. Thermal domain -- 8.3.1. Dynamic energy summary -- Chapter 9. Individual Layer Level Modeling -- 9.1. Electrical domain -- 9.1.1. Gas channels -- 9.1.2. Gas diffusion layer (GDL) -- 9.1.3. Catalyst layer -- 9.1.4. Membrane -- 9.2. Fluidic domain -- 9.2.1. Gas channels -- 9.2.2. Gas diffusion layer (GDL) -- 9.2.3. Catalyst sites -- 9.2.4. Membrane -- 9.2.5. General vapor saturation pressure formula -- 9.3. Thermal domain -- 9.3.1. Gas channels -- 9.3.2. Gas diffusion layer (GDL) -- 9.3.3. Catalyst sites -- 9.3.4. Membrane -- Chapter 10. Finite Element and Finite Volume Approach -- 10.1. Conservation of mass -- 10.2. Conservation of momentum -- 10.3. Conservation of matter -- 10.4. Conservation of charge -- 10.5. Conservation of energy -- PART 3: 1D DYNAMIC MODEL OF A NEXA FUEL CELL STACK -- Chapter 11. Detailed Nexa Proton Exchange Membrane Fuel Cell Stack Modeling -- 11.1. Modeling hypotheses -- 11.2. Modeling in the electrical domain -- 11.2.1. Cooling channels -- 11.2.2. Solid support and cathode gas channels -- 11.2.3. Cathode diffusion layer -- 11.2.4. Cathode catalytic layer -- 11.2.5. Membrane -- 11.2.6. Anode catalytic layer -- 11.2.7. Anode diffusion layer.
11.2.8. Solid support and anode gas channels -- 11.3. Modeling in the fluidic domain -- 11.3.1. Cooling channels -- 11.3.2. Cathode gas channels -- 11.3.3. Cathode diffusion layer -- 11.3.4. Cathode catalytic layer -- 11.3.5. Membrane -- 11.3.6. Anode catalytic layer -- 11.3.7. Anode diffusion layer -- 11.3.8. Anode gas channels -- 11.4. Thermal domain modeling -- 11.4.1. Cooling channels -- 11.4.2. Solid support of the cathode channels -- 11.4.3. Cathode gas channels -- 11.4.4. Cathode diffusion layer -- 11.4.5. Cathode catalyst layer -- 11.4.6. Membrane -- 11.4.7. Anode catalyst layer -- 11.4.8. Anode diffusion layer -- 11.4.9. Anode gas channels -- 11.4.10. Solid support of the anode channels -- 11.5. Set of adjustable parameters -- Chapter 12. Model Experimental Validation -- 12.1. Multiphysical model validation with a 1.2 kW fuel cell stack -- 12.1.1. Measuring equipment -- 12.1.2. Experimental validations -- Bibliography -- Index.
Abstract:
The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions. Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness. This book presents a detailed state of art of PEM fuel cell modeling, with very detailed physical phenomena equations in different physical domains. Examples and a fully coupled multi-physical 1.2 kW PEMFC model are given help the reader better understand how to use the equations.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View