
Turbulent Transport in Magnetized Plasmas.
Title:
Turbulent Transport in Magnetized Plasmas.
Author:
Horton, Wendell.
ISBN:
9789814383547
Personal Author:
Physical Description:
1 online resource (518 pages)
Contents:
Contents -- Foreword -- 1. Basic Concepts and Historical Background -- 1.1 Space and Astrophysics -- 1.2 World War II, Teller 1952 -- 1.3 Controlled Nuclear Fusion -- 1.4 Magnetic Confinement Conditions for Nuclear Fusion -- 1.5 Nature of Plasma Turbulence -- 1.6 Breakthrough with Tokamak Confinement -- 1.7 Confinement Records Set in Early Tokamaks -- 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR -- 1.7.2 TFTR and the D-T fusion plasmas -- 1.7.3 Third-generation tokamaks with international growth -- 1.8 JET Record Fusion Power Experiments -- References -- 2. Alfven and Drift Waves in Plasmas -- 2.1 Low-Frequency Wave Dispersion Relations -- 2.2 Reduction of the Kinetic Dispersion Relation -- 2.3 Drift Waves -- 2.4 Kinetic Alfven Waves -- 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves -- 2.5.1 Electrostatic drift waves -- 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field -- 2.7 Symmetries of the Drift Wave Eigenmodes -- 2.8 Outgoing Wave Boundary Conditions -- 2.8.1 Localized ion drift modes -- 2.9 Ion Acoustic Wave Turbulence -- 2.9.1 Electromagnetic scattering measurements of ion acoustic waves -- 2.9.2 Laser scattering experiment in Helium plasma -- 2.9.3 Probe measurements of the two-point correlation functions -- 2.9.4 Probe measurements of the spectrum and anomalous resistivity -- 2.9.5 Drift wave spectral distributions -- 2.9.6 Microwave scattering experiments in PLT -- 2.10 Drift Waves and Transport in the TEXT Tokamak -- 2.11 Drift Waves in Stellarators -- References -- 3. Mechanisms for Drift Waves -- 3.1 Drift Wave Turbulence -- 3.2 Drift Wave Mechanism -- 3.3 Energy Bounds for Turbulence Amplitudes -- 3.3.1 Density gradients -- 3.3.2 Temperature gradients -- 3.3.3 Drift wave eigenmodes in toroidal geometry -- 3.3.4 The effect of magnetic and Er shear on drift waves.
3.4 Weak Turbulence Theory for Drift Waves -- 3.5 Ion Temperature Gradient Mode -- 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models -- References -- 4. Two-Component Magnetohydrodynamics -- 4.1 Collisional Transport Equations -- 4.2 Current, Density and Temperature Gradient Driven Drift Modes -- 4.2.1 Ion acoustic waves and the thermal mode -- 4.2.2 Ion temperature gradient instability -- 4.3 Closure Models for Coupled Chain of Fluid Moments -- 4.3.1 Closure models for the chain of the fluid moments -- 4.3.1.1 Examples of heat flux problem in fluid closures -- 4.4 Pressure Gradient Driven Instabilities -- 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia -- 4.4.2 Scaling of correlation length and time -- 4.4.3 Magnetic fiutter thermal transport -- 4.4.4 Electron inertia Ohm's law -- 4.5 Momentum Stress Tensor Stability Analysis -- 4.6 Kinetic Ballooning Mode Instability -- References -- 5. Laboratory Experiments for Drift Waves -- 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles -- 5.2 Discovery of Drift Waves in Early Q-Machine Experiments -- References -- 6. Magnetohydrodynamics and Magnetic Confinement Geometries -- 6.1 The MHD-Magnetohydrodynamic Model -- 6.1.1 MHD equations -- 6.1.2 Conservation form of MHD -- 6.1.3 MHD stable plasmas -- 6.1.4 Interchange stability condition -- 6.1.5 Plasma energy functional of MHD -- 6.1.6 Limitations of the MHD model -- 6.2 Double Adiabatic Pressure Tensor for Anisotropically Heated Plasmas -- 6.3 Ballooning Interchange Modes and the Trapped Particle Instability -- 6.4 Experimental Discovery of the Trapped Particle Instabilities -- 6.5 Discovering the Trapped Particle Instability -- 6.5.1 Parallel particle dynamics -- References -- 7. Laboratory Plasma Experiments for Waves and Transport.
7.1 Laboratory Plasma Drift Waves in Cylinders -- 7.2 Helimak Confinement -- 7.2.1 Helimak geometry and plasma dynamics -- 7.2.2 Magnetized jet: the unbounded case -- 7.2.3 Magnetized jets in Helimak -- 7.2.4 The slabmodel for the Helimak -- 7.2.5 Linear dynamics in Helimak -- 7.3 Toroidal Octupoles and Field Reversed Configurations -- 7.3.1 Toroidal geometry with helical magnetic fields -- 7.3.2 Density of rational surfaces and the KAM tori -- 7.3.3 Dynamical limitations of the MHD model and the fluid moments closure problem -- 7.3.4 Reduction of the toroidal plasma dynamics -- References -- 8. Turbulence Theory for Drift and Alfven Waves -- 8.1 General Considerations: Analogs with Geophysical Fluids -- 8.2 Nonlinear Drift Wave Models -- 8.2.1 Consequences of sheared flows on the drift wave power spectrum -- 8.3 Ion Temperature Gradient Induced Transport -- 8.4 Nonlinear Three-Mode Interactions and Drift-Wave Turbulence in a Tokamak Edge Plasma -- 8.5 Inertial Spectral Ranges in 2D and 3D Turbulence -- References -- 9. Impurity Transport Studies -- 9.1 Drift Wave Eigenmodes with Active Impurity Components -- 9.1.1 Eigenmodes and the quasilinear fluxes with impurities -- 9.2 The Three-Component Fluid Equations -- 9.2.1 Reduction of three-component fluid equations -- 9.2.2 Trapped electron mode (inside the SOL) -- 9.2.3 Spectral expansion of the nonlinear fields for impurity turbulence -- 9.2.4 Application to ITER -- 9.3 Impurity Transport in High-Density Regimes -- 9.4 Trace Impurity Transport Studies in the Texas Experimental Tokamak (TEXT) -- 9.5 Thermalization of Impurities and the Collisional Fluxes -- 9.6 Scandium and Titanium Transport with Ionization and Recombination -- 9.7 Mass Flows and Transport of Impurities in the Tokamak -- References -- 10. Coherent Structures in Plasmas.
10.1 Kelvin-Helmholtz Instability and Vortices in Magnetized Plasma -- 10.2 Drift Wave Models for LAPD -- 10.2.1 The vorticity probe -- 10.2.2 Vorticity probe measurements on the Kelvin-Helmholtz instability -- 10.2.3 Kelvin Helmholtz turbulence with drift waves -- 10.3 Experimental Measurement of Vorticity Dynamics Studies and the Reynolds Stress -- 10.4 Electromagnetic Vortices -- 10.4.1 Basic considerations of Alfven-drift wave vortices -- 10.4.2 Special solutions for vortex boundary value problems -- 10.4.3 Drift Alfven wave vortices -- 10.4.4 Electromagnetic electron skin depth vortices and electromagnetic short-wavelength drift vortices -- 10.4.5 Comparisons of the electromagnetic vortices -- (1) Common features -- (2) Differences in Structure -- (3) Different allowed regions of the vortex propagation speed -- References -- 11. Fluctuating Magnetic Fields and Chaotic Orbits -- 11.1 Kinetic Theory Formulas for the Fluctuating Electromagnetic Fields -- 11.2 Requirements for Self-Consistent Fields -- 11.2.1 Dispersion relation for two-temperature Maxwellian distribution -- 11.2.2 Electromagnetic dispersion relation for cross-field beam injected plasma -- 11.2.3 Anisotropy-driven growth rates -- 11.3 Quasilinear Fluctuation Diffusion Tensor -- 11.4 Electron Diffusion from Magnetic Flutter in Tokamaks -- 11.4.1 Polarization relations for low-frequency electromagnetic fluctuations -- 11.4.2 Qualitative picture of anomalous transport due to magnetic fluctuations -- 11.4.3 Electron thermal transport from magnetic fluctuations in the fluid approximation -- 11.4.4 Kinetic theory of transport due to magnetic fluctuations -- References -- 12. Toroidal Confinement Systems -- 12.1 Toroidal System with High Temperature Plasmas -- 12.2 Helical Toroidal Systems: LHD, Heliotrons, and Stellarators -- 12.3 Neoclassical Dynamics and Transport in Toroidal Systems.
12.4 Large Helical System Fields and Transport -- 12.4.1 Fluctuations in the ballooning mode representation -- 12.4.2 Drift waves in the ballooning representation -- 12.5 Toroidal Alfven Eigenmodes -- References -- 13. Temperature Gradient Driven Instabilities -- 13.1 Ion Temperature Gradient Instabilities -- 13.2 Mechanism of the Ion Temperature Gradient Instabilities -- 13.2.1 Nyquist analysis -- 13.2.2 Full 3 × 3 electromagnetic ion temperature gradient modes -- 13.2.3 Limiting cases of the electromagnetic ITG dispersion relation -- 13.2.4 Ion temperature gradient and trapped electron transport -- 13.3 Analytical TEM-ITG Drift-Wave Model -- 13.3.1 Nonadiabatic electron response functions -- 13.4 Internal Transport Barriers for ITG/TEM Models -- 13.5 The Weiland ITG/TEM Transport Model -- References -- 14. Electron Temperature Gradient Driven Turbulence -- 14.1 Electron Transport and the Critical Temperature Gradient -- 14.2 Electron Temperature Gradient Transport -- 14.2.1 Two-space scales for electron transport -- 14.2.2 Nonadiabatic ion response -- 14.3 Electron Thermal Transport in TCV -- 14.4 ECRH Driven Discharges -- 14.5 Electron Temperature Gradient Turbulence Modeling -- 14.6 Validation Analysis of the Electron Transport Modeling -- 14.7 LHCD Driven Discharges and Anisotropic Electron Phase-Space Distribution Functions -- 14.7.1 Comparison of Te and q e gradients -- 14.7.2 Kinetic dispersion relation for LHCD plasma -- 14.7.3 Hydrodynamic-FLR limit of PLHCD-function -- 14.7.4 Analytic quasilinear RF velocity diffusivity -- 14.7.5 High-power LHCD plateau model Fe -- References -- 15. Magnetic Reconnection Instabilities -- 15.1 Introduction -- 15.1.1 Nonlinear dynamics of the sawtooth events -- 15.2 Effects of Drift Wave Turbulence on Magnetic Reconnection -- 15.2.1 Two-component fluid simulations.
15.2.2 Magnetic islands caused by turbulence.
Abstract:
The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View