Cover image for Elementary Particle Physics : Foundations of the Standard Model.
Elementary Particle Physics : Foundations of the Standard Model.
Title:
Elementary Particle Physics : Foundations of the Standard Model.
Author:
Nagashima, Yorikiyo.
ISBN:
9783527648917
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (648 pages)
Contents:
Title -- Contents -- Preface -- Acknowledgments -- Color Plates -- Part One Electroweak Dynamics -- 1 The Standard Model -- 1.1 Introduction -- 1.2 Weak Charge and SU(2) × U(1) Symmetry -- 1.3 Spontaneous Symmetry Breaking -- 1.3.1 An Intuitive Picture of Spontaneous Symmetry Breaking -- 1.3.2 Higgs Mechanism -- 1.3.3 Unitary Gauge -- 1.3.4 Mass Generation -- 1.4 Gauge Interactions -- 1.5 Higgs Interactions -- 1.6 Feynman Rules of Electroweak Theory -- 1.7 Roles of the Higgs in Gauge Theory -- 2 Neutral Current -- 2.1 Discovery of the Neutral Current -- 2.2 v-e Scattering -- 2.3 νN -> ν + X -- 2.4 Parity Violation in the Electromagnetic Processes -- 2.4.1 Atomic Process -- 2.4.2 Polarized e-D Scattering -- 2.5 Electroweak Unification at High Q2 -- 2.6 Asymmetry in the e-e+ -> ll,cc,bb -- 2.7 Asymmetry in q + q -> l + l -- 3 W -- 3.1 Discovery of W, Z -- 3.2 Basic Formulas -- 3.2.1 Decay Width -- 3.2.2 Hadronic Production of W,Z -- 3.3 Properties of W -- 3.3.1 Asymmetry of Decay Leptons from W,Z -- 3.3.2 Spin of W,Z -- 3.3.3 Mass of W -- 3.3.4 Decay Width of W -- 3.3.5 Triple Gauge Coupling -- 4 Physics at Z Resonance -- 4.1 Born Approximation -- 4.2 Improved Born Approximation -- 4.3 Experimental Arrangements -- 4.3.1 Detectors -- 4.3.2 Luminosity Monitor -- 4.3.3 Energy Determination -- 4.3.4 Heavy Quark Tagging -- 4.4 Observations -- 4.4.1 Event Characteristics -- 4.4.2 Mass, Widths and Branching Ratios -- 4.4.3 Invisible Width -- 4.4.4 Asymmetries -- 4.5 Weinberg Angle and ρ Parameter -- 5 Precision Tests of the Electroweak Theory -- 5.1 Input Parameters -- 5.2 Renormalization -- 5.2.1 Prescription -- 5.2.2 Self-Energy of Gauge Bosons -- 5.3 µ Decay -- 5.3.1 Δr, ρ, Δα -- 5.3.2 Running Electromagnetic Constant -- 5.3.3 Residual Corrections and Numerical Evaluation -- 5.4 Improved Born Approximation -- 5.4.1 γ-Z Mixing -- 5.4.2 α or GF?.

5.4.3 Vertex Correction -- 5.5 Effective Weinberg Angle -- 5.6 Weinberg Angle in the MS Scheme -- 5.7 Beyond the Standard Model -- 6 Cabibbo-Kobayashi-Maskawa Matrix -- 6.1 Origin of the CKM Matrix -- 6.2 CKM Matrix Elements -- 6.3 The Unitarity Triangle -- 6.4 Formalism of the Two Neutral Meson System -- 6.4.1 Mass Matrix, Mixing and CP Parameters -- 6.4.2 CP Parameters of the K Meson -- 6.4.3 Mixing in the B0-B0 System -- 6.4.4 D0-D0 Mixing -- 6.5 Theoretical Evaluation of the Mass Matrix -- 6.5.1 Mass Matrix of the K Meson -- 6.5.2 Mass Matrix of the B Meson -- 6.6 CP Violation in the B Sector -- 6.6.1 Indirect CP Violation -- 6.6.2 Direct CP Violation -- 6.6.3 CP Violation in Interference -- 6.6.4 Coherent B0B0 Production -- 6.7 Extraction of the CKM Phases -- 6.7.1 Using B0-B Mixing -- 6.7.2 Penguin Pollution -- 6.7.3 Experiments at the B-factory -- 6.8 Test of Unitarity -- 6.8.1 Rare Decays of the K Meson -- 6.8.2 Global Fit of the Unitarity Triangle -- 6.9 CP Violation beyond the Standard Model -- Part Two QCD Dynamics -- 7 QCD -- 7.1 Fundamentals of QCD -- 7.1.1 Lagrangian -- 7.1.2 The Feynman Rules -- 7.1.3 Gauge Invariance and the Gluon Self-Coupling -- 7.1.4 Strength of the Color Charge -- 7.1.5 QCD Vacuum -- 7.2 Renormalization Group Equation -- 7.2.1 Running Coupling Constant -- 7.2.2 Asymptotic Freedom -- 7.2.3 Scale Dependence of Observables -- 7.2.4 Running Mass -- 7.2.5 Quark Masses -- 7.3 Gluon Emission -- 7.3.1 Emission Probability -- 7.3.2 Collinear and Infrared Divergence -- 7.3.3 Leading Logarithmic Approximation -- 7.3.4 Transverse Kick -- 8 Deep Inelastic Scattering -- 8.1 Introduction -- 8.2 The Parton Model Revisited -- 8.2.1 Structure Functions -- 8.2.2 Equivalent Photons -- 8.3 QCD Corrections -- 8.3.1 Virtual Compton Scattering -- 8.3.2 Factorization -- 8.3.3 Power Expansion of the Evolution Equation.

8.3.4 Cascade Branching of the Partons -- 8.4 DGLAP Evolution Equation -- 8.4.1 Gluon Distribution Function -- 8.4.2 Regularization of the Splitting Function -- 8.4.3 Factorization Scheme -- 8.5 Solutions to the DGLAP Equation -- 8.5.1 Method of Moments -- 8.5.2 Double Logarithm -- 8.5.3 Monte Carlo Generators -- 8.6 Drell-Yan Process -- 8.6.1 Factorization in Hadron Scattering -- 9 Jets and Fragmentations -- 9.1 Partons and Jets -- 9.1.1 Fragmentation Function -- 9.1.2 Jet Shape Variables -- 9.1.3 Applications of Jet Variables -- 9.1.4 Jet Separation -- 9.2 Parton Shower Model -- 9.3 Hadronization Models -- 9.3.1 Independent Fragmentation Model -- 9.3.2 String Model -- 9.3.3 Cluster Model -- 9.3.4 Model Tests -- 9.4 Test of the Asymptotic Freedom -- 9.4.1 Inclusive Reactions -- 9.4.2 Jet Event Shapes -- 9.4.3 Summary of the Running as ?s(Q2) -- 10 Gluons -- 10.1 Gauge Structure of QCD -- 10.1.1 Spin of the Gluon -- 10.1.2 Self-Coupling of the Gluon -- 10.1.3 Symmetry of QCD -- 10.2 Color Coherence -- 10.2.1 Angular Ordering -- 10.2.2 String Effect x -- 10.3 Fragmentation at Small x -- 10.3.1 DGLAP Equation with Angular Ordering -- 10.3.2 αs Dependence and N = 1 Pole in the Anomalous Moment -- 10.3.3 Multiplicity Distribution -- 10.3.4 Humpback Distribution: MLLA -- 10.4 Gluon Fragmentation Function -- 10.5 Gluon Jets vs. Quark Jets -- 11 Jets in Hadron Reactions -- 11.1 Introduction -- 11.2 Jet Production with Large pT -- 11.3 2 -> 2 Reaction -- 11.3.1 Kinematics and Cross Section -- 11.3.2 Jet Productions Compared with pQCD -- 11.4 Jet Clustering in Hadronic Reactions -- 11.4.1 Cone Algorithm -- 11.4.2 kT Algorithm -- 11.5 Reproducibility of the Cross Section -- 11.5.1 Scale Dependence -- 11.5.2 Parton Distribution Function -- 11.6 Multijet Productions -- 11.7 Substructure of the Partons? -- 11.8 Vector Particle Production.

11.8.1 Direct Photon Production -- 11.8.2 W : pT Distribution -- 11.9 Heavy Quark Production -- 11.9.1 Cross Sections -- 11.9.2 Comparisons with Experiments -- 11.9.3 Top Quark Production -- Appendix A Gamma Matrix Traces and Cross Sections -- Appendix B Feynman Rules for the Electroweak Theory -- Appendix C Radiative Corrections to the Gauge Boson Self-Energy -- Appendix D 't Hooft's Gauge -- Appendix E Fierz Transformation -- Appendix F Collins-Soper Frame -- Appendix G Multipole Expansion of the Vertex Function -- Appendix H SU(N) -- Appendix I Unitarity Relation -- Appendix J σ Model and the Chiral Perturbation Theory -- Appendix K Splitting Function -- Appendix L Answers to the Problems -- References -- Index.
Abstract:
This second volume of Elementary Particle Physics, "Foundations of the Standard Model", concentrates on the main aspects of the Standard Model by addressing developments from its establishments to recent progress and some future prospects. Two subjects are clearly separated which cover dynamics of the electroweak and strong interactions, but basso continuo throughout the book is a bridge between theory and experiments. All the basic formulas are derived from the first principle, and corrections to meet the experimental accuracy are explained. This volume is a logical step up from volume I but can also be considered and used as an independent monograph for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: