
Amino Acids, Peptides and Proteins in Organic Chemistry, Analysis and Function of Amino Acids and Peptides.
Title:
Amino Acids, Peptides and Proteins in Organic Chemistry, Analysis and Function of Amino Acids and Peptides.
Author:
Hughes, Andrew B.
ISBN:
9783527631858
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (510 pages)
Series:
Amino Acids, Peptides and Proteins in Organic Chemistry (VCH) Ser.
Contents:
Amino Acids, Peptides and Proteins in Organic Chemistry:Volume 5 - Analysis and Function of Amino Acids and Peptides -- Contents -- List of Contributors -- 1 Mass Spectrometry of Amino Acids and Proteins -- 1.1 Introduction -- 1.1.1 Mass Terminology -- 1.1.2 Components of a Mass Spectrometer -- 1.1.3 Resolution and Mass Accuracy -- 1.1.4 Accurate Analysis of ESI Multiply Charged Ions -- 1.1.5 Fragment Ions -- 1.2 Basic Protein Chemistry and How it Relates to MS -- 1.2.1 Mass Properties of the Polypeptide Chain -- 1.2.2 In Vivo Protein Modi.cations -- 1.2.3 Ex Vivo Protein Modi.cations -- 1.3 Sample Preparation and Data Acquisition -- 1.3.1 Top-Down Versus Bottom-Up Proteomics -- 1.3.2 Shotgun Versus Targeted Proteomics -- 1.3.3 Enzymatic Digestion for Bottom-Up Proteomics -- 1.3.4 Liquid Chromatography and Capillary Electrophoresis for Mixtures in Bottom-Up -- 1.4 Data Analysis of LC-MS/MS (or CE-MS/MS) of Mixtures -- 1.4.1 Identi.cation of Proteins from MS/MS Spectra of Peptides -- 1.4.2 De Novo Sequencing -- 1.5 MS of Protein Structure, Folding, and Interactions -- 1.5.1 Methods to Mass-Tag Structural Features -- 1.6 Conclusions and Perspectives -- References -- 2 X-Ray Structure Determination of Proteins and Peptides -- 2.1 Introduction -- 2.1.1 Light Microscopy -- 2.1.2 X-Rays and Crystallography at the Start -- 2.1.3 X-Ray Crystallography Today -- 2.1.4 Limitations of X-Ray Crystallography -- 2.2 Growing Crystals -- 2.2.1 Why Crystals? -- 2.2.2 Basic Methods of Growing Protein Crystals -- 2.2.3 Protein Sample -- 2.2.4 Preliminary Crystal Analysis -- 2.2.5 Mounting Crystals for X-Ray Analysis -- 2.3 Symmetry and Space Groups -- 2.3.1 Crystals and the Unit Cell -- 2.3.2 Point Groups -- 2.3.3 Space Groups -- 2.3.4 Asymmetric Unit -- 2.4 X-Ray Scattering and Diffraction -- 2.4.1 X-Rays and Mathematical Representation of Waves.
2.4.2 Interaction of X-Rays with Matter -- 2.4.3 Crystal Lattice, Miller Indices, and the Reciprocal Space -- 2.4.4 X-Ray Diffraction from a Crystal: Bragg.s Law -- 2.4.5 Bragg.s Law in Reciprocal Space -- 2.4.6 Fourier Transform Equation from a Lattice -- 2.4.7 Friedel' s Law and the Electron Density Equation -- 2.5 Collecting and Processing Diffraction Data -- 2.5.1 Data Collection Strategy -- 2.5.2 Symmetry and Scaling Data -- 2.6 Solving the Structure (Determining Phases) -- 2.6.1 Molecular Replacement -- 2.6.2 Isomorphous Replacement -- 2.6.3 MAD -- 2.7 Analyzing and Re.ning the Structure -- 2.7.1 Electron Density Interpretation and Model Building -- 2.7.2 Protein Structure Refinement -- 2.7.3 Protein Structure Validation -- References -- 3 Nuclear Magnetic Resonance of Amino Acids, Peptides, and Proteins -- 3.1 Introduction -- 3.1.1 Active Nuclei in NMR -- 3.1.2 Energy Levels and Spin States -- 3.1.3 Main NMR Parameters (Glossary) -- 3.1.3.1 Chemical Shift -- 3.1.3.2 Scalar Coupling Constants -- 3.1.3.3 NOE -- 3.1.3.4 RDC -- 3.2 Amino Acids -- 3.2.1 Historical Significance -- 3.2.2 Amino Acids Structure -- 3.2.3 Random Coil Chemical Shift -- 3.2.4 Spin Systems -- 3.2.5 Labile Protons -- 3.2.6 Contemporary Relevance: Metabolomics -- 3.3 Peptides -- 3.3.1 Historical Significance -- 3.3.2 Oligopeptides as Models for Conformational Transitions in Proteins -- 3.3.3 Bioactive Peptides -- 3.3.4 Choice of the Solvent -- 3.3.4.1 Transport Fluids -- 3.3.4.2 Membranes -- 3.3.4.3 Receptor Cavities -- 3.3.5 Ensemble Calculations -- 3.3.6 Selected Examples from the Major Fields of Bioactive Peptides -- 3.3.6.1 Aspartame -- 3.3.6.2 Opioids -- 3.3.6.3 Transmembrane Helices -- 3.3.6.4 Cyclopeptides -- 3.4 Proteins -- 3.4.1 An Alternative to or a Validation of Diffractometric Methods? -- 3.4.2 Protein Spectra -- 3.4.3 Wüthrich.s Protocol.
3.4.3.1 Sample Preparation -- 3.4.3.2 Recording NMR Spectra -- 3.4.3.3 Sequential Assignment -- 3.4.3.4 Conformational Constraints -- 3.4.3.5 Model Building -- 3.4.4 Recent Developments -- 3.4.5 Selected Structures -- 3.4.5.1 Superoxide Dismutases -- 3.4.5.2 Malate Synthase G -- 3.4.5.3 Interactions -- 3.5 Conclusions -- References -- 4 Structure and Activity of N-Methylated Peptides -- 4.1 Introduction -- 4.2 Conformational Effects of N-Methylation -- 4.3 Effects of N-Methylation on Bioactive Peptides -- 4.3.1 Thyrotropin-Releasing Hormone -- 4.3.2 Cyclic Peptides -- 4.3.3 Somatostatin Analogs -- 4.3.4 Antimalarial Peptide -- 4.4 Concluding Remarks -- References -- 5 High-Performance Liquid Chromatography of Peptides and Proteins -- 5.1 Introduction -- 5.2 Basic Terms and Concepts in Chromatography -- 5.3 Chemical Structure of Peptides and Proteins -- 5.3.1 Biophysical Properties of Peptides and Proteins -- 5.3.2 Conformational Properties of Peptides and Proteins -- 5.3.3 Optical Properties of Peptides and Proteins -- 5.4 HPLC Separation Modes in Peptide and Protein Analysis -- 5.4.1 SEC -- 5.4.2 RPC -- 5.4.3 NPC -- 5.4.4 HILIC -- 5.4.5 ANPC -- 5.4.6 HIC -- 5.4.7 IEX -- 5.4.8 AC -- 5.5 Method Development from Analytical to Preparative Scale Illustrated for HP-RPC -- 5.5.1 Development of an Analytical Method -- 5.5.2 Scaling Up to Preparative Chromatography -- 5.5.3 Fractionation -- 5.5.4 Analysis of the Quality of the Fractionation -- 5.6 Multidimensional HPLC -- 5.6.1 Puri.cation of Peptides and Proteins by MD-HPLC Methods -- 5.6.2 Fractionation of Complex Peptide and Protein Mixtures by MD-HPLC -- 5.6.3 Operational Strategies for MD-HPLC Methods -- 5.6.3.1 Off-line Coupling Mode for MD-HPLC Methods -- 5.6.3.2 On-Line Coupling Mode for MD-HPLC Methods -- 5.6.4 Design of an Effective MD-HPLC Scheme -- 5.6.4.1 Orthogonality of Chromatographic Modes.
5.6.4.2 Compatibility Matrix of Chromatographic Modes -- 5.7 Conclusions -- References -- 6 Local Surface Plasmon Resonance and Electrochemical Biosensing Systems for Analyzing Functional Peptides -- 6.1 Localized Surface Plasmon Resonance (LSPR)-Based Microfluidics Biosensor for the Detection of Insulin Peptide Hormone -- 6.1.1 LSPR and Micro Total Analysis Systems -- 6.1.2 Microfluidic LSPR Chip Fabrication and LSPR Measurement -- 6.1.3 Detection of the Insulin-Anti-Insulin Antibody Reaction on a Chip -- 6.2 Electrochemical LSPR-Based Label-Free Detection of Melittin -- 6.2.1 Melittin and E-LSPR -- 6.2.2 Fabrication of E-LSPR Substrate and Formation of the Hybrid Bilayer Membrane -- 6.2.3 Measurements of Membrane-Based Sensors for Peptide Toxin -- 6.3 Label-Free Electrochemical Monitoring of b-Amyloid (Ab) Peptide Aggregation -- 6.3.1 Alzheimer.s Ab Aggregation and Electrochemical Detection Method -- 6.3.2 Label-Free Electrochemical Detection of Ab Aggregation -- References -- 7 Surface Plasmon Resonance Spectroscopy in the Biosciences -- 7.1 Introduction -- 7.2 SPR-Based Optical Biosensors -- 7.3 Principle of Operation of SPR Biosensors -- 7.4 Description of a SPR Instrument -- 7.4.1 Sensor Surface -- 7.4.2 Flow System -- 7.4.3 Detection System -- 7.5 Application of SPR in Immunosensor Design -- 7.5.1 Assay Development -- 7.5.1.1 Immobilization of the Analyte to a Speci.c Chip Surface -- 7.5.1.2 Assay Design -- 7.6 Application of SPR in Membrane Interactions -- 7.6.1 General Protocols for Membrane Interaction Studies by SPR -- 7.6.1.1 Liposome Preparation -- 7.6.1.2 Formation of Bilayer Systems -- 7.6.1.3 Analyte Binding to the Membrane System -- 7.6.1.4 Membrane Binding of Antimicrobial Peptides by SPR -- 7.7 Data Analysis -- 7.7.1 Linearization Analysis -- 7.7.2 Numerical Integration Analysis -- 7.7.3 Steady-State Approximations.
7.8 Conclusions -- References -- 8 Atomic Force Microscopy of Proteins -- 8.1 Foreword -- 8.1.1 Importance of Asking the Right Question -- 8.2 AFM -- 8.2.1 Principle and Basic Modes of Operation -- 8.2.2 How Does a Tip Tap? -- 8.3 Bioimaging Highlights -- 8.3.1 Protein Oligomerization, Aggregation, and Fibers -- 8.3.2 Membrane Binding and Lysis -- 8.3.3 Ion Channel Activity -- 8.3.4 Protein-DNA-Specific Binding -- 8.4 Issues -- 8.4.1 Resolution -- 8.4.2 Imaging Force -- 8.4.3 Repetitive Stress -- 8.4.4 Artifacts Related to too Low Free Amplitude -- 8.4.5 Transient Force and Bandwidth -- 8.4.6 Accuracy of Surface Tracking -- 8.4.7 Step Artifacts -- 8.5 Force Measurements -- 8.6 Liquid Imaging -- 8.7 Sample Preparation for Bioimaging -- 8.7.1 Adhesion -- 8.7.2 Physical Entrapment -- 8.7.3 Chemical Binding -- 8.8 Outlook -- References -- 9 Solvent Interactions with Proteins and Other Macromolecules -- 9.1 Introduction -- 9.2 Solvent Applications -- 9.2.1 Research -- 9.2.2 Precipitation -- 9.2.3 Chromatography -- 9.2.4 Protein Refolding -- 9.2.5 Formulation -- 9.3 Solvent Application for Viruses -- 9.3.1 Isolation and Puri.cation of Viruses -- 9.3.2 Stabilization and Formulation of Viruses -- 9.3.3 Inactivation of Viruses -- 9.4 Solvent Application for DNA -- 9.4.1 Isolation and Puri.cation of DNA -- 9.4.2 Stability of DNA in a Cosolvent System -- 9.5 Mechanism -- 9.5.1 Physical Mechanism -- 9.5.1.1 Hydration -- 9.5.1.2 Excluded Volume -- 9.5.2 Thermodynamic Interaction -- 9.5.2.1 Group Interaction: Model Compound Solubility -- 9.5.3 Preferential Interaction -- 9.6 Protein-Solvent Interactions in Frozen and Freeze-Dried Systems -- 9.6.1 Frozen Systems -- 9.6.2 Freeze-Dried System -- 9.7 Conclusions -- References -- 10 Role of Cysteine -- 10.1 Sulfur: A Redox Chameleon with Many Faces.
10.2 Three Faces of Thiols: Nucleophilicity, Redox Activity, and Metal Binding.
Abstract:
This is the last of five books in the Amino Acids, Peptides and Proteins in Organic Synthesis series. Closing a gap in the literature, this is the only series to cover this important topic in organic and biochemistry. Drawing upon the combined expertise of the international "who's who" in amino acid research, these volumes represent a real benchmark for amino acid chemistry, providing a comprehensive discussion of the occurrence, uses and applications of amino acids and, by extension, their polymeric forms, peptides and proteins. The practical value of each volume is heightened by the inclusion of experimental procedures. The 5 volumes cover the following topics: Volume 1: Origins and Synthesis of Amino Acids Volume 2: Modified Amino Acids, Organocatalysis and Enzymes Volume 3: Building Blocks, Catalysis and Coupling Chemistry Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis Volume 5: Analysis and Function of Amino Acids and Peptides Volume 5 of this series presents a wealth of methods to analyze amino acids and peptides. Classical approaches are described, such as X-ray analysis, chromatographic methods, NMR, AFM, mass spectrometry and 2D-gel electrophoresis, as well as newer approaches, including Surface Plasmon Resonance and array technologies. Originally planned as a six volume series, Amino Acids, Peptides and Proteins in Organic Chemistry now completes with five volumes but remains comprehensive in both scope and coverage. Further information about the 5 Volume Set and purchasing details can be viewed here.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View