Cover image for Function Classes on the Unit Disc : An Introduction.
Function Classes on the Unit Disc : An Introduction.
Title:
Function Classes on the Unit Disc : An Introduction.
Author:
Pavlovic, Miroslav.
ISBN:
9783110281903
Personal Author:
Physical Description:
1 online resource (449 pages)
Series:
De Gruyter Studies in Mathematics ; v.52

De Gruyter Studies in Mathematics
Contents:
Preface -- 1 The Poisson integral and Hardy spaces -- 1.1 The Poisson integral -- 1.1.1 Borel measures and the space h1 -- 1.2 Spaces hp and Lp(T) (p > 1) -- 1.3 Space hp (p < 1) -- 1.4 Harmonic conjugates -- 1.4.1 Privalov-Plessner's theorem and the Hilbert operator -- 1.5 Hardy spaces: basic properties -- 1.5.1 Radial limits and mean convergence -- 1.5.2 Space H1 -- 1.6 Riesz projection theorem -- 1.6.1 Aleksandrov's theorem -- Further notes and results -- 2 Subharmonic functions and Hardy spaces -- 2.1 Basic properties of subharmonic functions -- 2.1.1 Maximum principle -- 2.2 Properties of the mean values -- 2.3 Riesz measure -- 2.3.1 Riesz' representation formula -- 2.4 Factorization theorems -- 2.4.1 Inner-outer factorization -- 2.5 Some sharp inequalities -- 2.6 Hardy-Stein identities -- 2.6.1 Lacunary series -- 2.7 Subordination principle -- 2.7.1 Composition with inner functions -- 2.7.2 Approximation with inner functions -- Further notes and results -- 3 Subharmonic behavior and mixed norm spaces -- 3.1 Quasi-nearly subharmonic functions -- 3.2 Regularly oscillating functions -- 3.3 Mixed norm spaces: definition and basic properties -- 3.4 Embedding theorems -- 3.5 Fractional integration -- 3.6 Weighted mixed norm spaces -- 3.6.1 Lacunary series in mixed norm spaces -- 3.6.2 Bergman spaces with rapidly decreasing weights -- 3.6.3 Mixed norm spaces with subnormal weights -- 3.7 Lq-integrability of lacunary power series -- 3.7.1 Lacunary series in C[0, 1] -- Further notes and results -- 4 Taylor coefficients with applications -- 4.1 Using interpolation of operators on Hp -- 4.1.1 An embedding theorem -- 4.1.2 The case of monotone coefficients -- 4.2 Strong convergence in H1 -- 4.2.1 Generalization to (C, a)-convergence -- 4.3 A (C, a)-maximal theorem -- Further notes and results -- 5 Besov spaces.

5.1 Decomposition of Besov spaces: case 1 < p < ⋄ -- 5.2 Maximal function -- 5.3 Decomposition of Besov spaces: case 0 < p =8 -- 5.3.1 Radial limits of Hardy-Bloch functions -- 5.4 Duality in the case 0 < p ≤∞ -- 5.5 Embeddings between Hardy and Besov spaces -- 5.6 Best approximation by polynomials -- 5.7 Normal Besov spaces -- 5.8 Inner functions in Besov and Hardy-Sobolev spaces -- 5.8.1 Approximation of a singular inner function -- 5.8.2 Hardy-Sobolev space Sp 1/p -- 5.8.3 f-property and K-property -- Further notes and results -- 6 The dual of H1 and some related spaces -- 6.1 Norms on BMOA -- 6.2 Garsia's and Fefferman's theorems -- 6.2.1 Fefferman's duality theorem -- 6.3 Vanishing mean oscillation -- 6.4 BMOA and Bp 1/p -- 6.4.1 Tauberian nature of Bp 1/p -- 6.5 Coefficients of BMOA functions -- 6.6 Bloch space -- 6.7 Mean growth of Hp-Bloch functions -- 6.8 Composition operators on B and BMOA -- 6.8.1 Weighted Bloch spaces -- 6.9 Proof of the bi-Bloch lemma -- Further notes and results -- 7 Littlewood-Paley theory -- 7.1 Vector maximal theorems and Calderon's area theorem -- 7.2 Littlewood-Paley g-theorem -- 7.3 Applications of the (C,m)-maximal theorem -- 7.4 Generalization of the -theorem -- 7.5 Proof of Calderón's theorem -- 7.6 Littlewood-Paley inequalities -- 7.7 Hyperbolic Hardy classes -- Further notes and results -- 8 Lipschitz spaces of first order -- 8.1 Definitions and basic properties -- 8.1.1 Lipschitz spaces of analytic functions -- 8.1.2 Mean Lipschitz spaces -- 8.2 Lipschitz condition for the modulus -- 8.3 Composition operators -- 8.4 Composition operators into HΛ pω -- 8.5 Inner functions -- Further notes and results -- 9 Lipschitz spaces of higher order -- 9.1 Moduli of smoothness and related spaces -- 9.2 Lipschitz spaces and spaces of harmonic functions -- 9.3 Conjugate functions.

9.4 Integrated mean Lipschitz spaces -- 9.4.1 Generalized Lipschitz spaces -- 9.5 Invariant Besov spaces -- 9.6 BMO-type characterizations of Lipschitz spaces -- 9.6.1 Division and multiplication by inner functions -- Further notes and results -- 10 One-to-one mappings -- 10.1 Integral means of univalent functions -- 10.1.1 Distortion theorems -- 10.2 Membership of univalent functions in some function classes -- 10.3 Quasiconformal harmonic mappings -- 10.3.1 Boundary behavior of QCH homeomorphisms of the disk -- 10.4 Hp-classes of quasiconformal mappings -- Further notes and results -- 11 Coefficients multipliers -- 11.1 Multipliers on abstract spaces -- 11.1.1 Compact multipliers -- 11.2 Multipliers for Hardy and Bergman spaces -- 11.2.1 Multipliers from H1 to BMOA -- 11.3 Solid spaces -- 11.3.1 Solid hull of Hardy spaces (0 < p < 1) -- 11.4 Multipliers between Besov spaces -- 11.4.1 Monotone multipliers -- 11.5 Multipliers of spaces with subnormal weights -- 11.6 Some applications to composition operators -- Further notes and results -- 12 Toward a theory of vector-valued spaces -- 12.1 Some properties of admissible spaces -- 12.2 Subharmonic behavior of

B.4 Rademacher functions and Khintchin's inequality -- B.5 Nikishin's theorem -- B.6 Nikishin-Stein's theorem -- B.7 Banach's principle and the theorem on a.e. convergence -- B.8 Vector-valued maximal theorem -- Further notes and results -- Bibliography -- Index.
Abstract:
The monograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman-Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p > 0), and a treatment of lacunary series with values in quasi-Banach spaces.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: