Cover image for Modern Course in the Quantum Theory of Solids.
Modern Course in the Quantum Theory of Solids.
Title:
Modern Course in the Quantum Theory of Solids.
Author:
Han, Fuxiang.
ISBN:
9789814417150
Personal Author:
Physical Description:
1 online resource (721 pages)
Contents:
Contents -- Preface -- 1. Lattice Dynamics -- 1.1 Born-Oppenheimer Approximation -- 1.2 Lattice Potential Energy and Harmonic Approximation -- 1.3 Normal Modes of a Three-Dimensional Crystal with a Multi-Atom Basis -- 1.3.1 Equations of motion of atoms -- 1.3.2 Allowed values of wave vector k -- 1.3.3 Allowed values of frequency ω -- 1.3.4 Polarization vectors -- 1.3.5 Displacements of atoms -- 1.3.6 Hamiltonian of a crystal with a multi-atom basis -- 1.4 Classical Theory of the Lattice Specific Heat -- 1.5 Quantization of Lattice Vibrations -- 1.5.1 Statistics for phonons -- 1.6 Phonon Density of States -- 1.7 Lattice Specific Heat of Solids -- 1.7.1 General expression of the lattice specific heat -- 1.7.2 High-temperature limit -- 1.7.3 Low-temperature limit -- 1.8 Debye Model -- 1.8.1 High-temperature limit -- 1.8.2 Low-temperature limit -- 1.8.3 Debye temperature -- 1.9 Einstein Model -- 1.10 Effect of Thermal Expansion on Phonon Frequencies -- 1.11 Specific Heat of a Metal -- Problems -- 2. Determination of Phonon Dispersion Relations -- 2.1 Experimental Techniques -- 2.1.1 Triple-axis spectrometer -- 2.1.2 Time-of-flight-spectrometer -- 2.2 Description of Neutron Scattering -- 2.2.1 System of the neutron and crystal -- 2.2.2 Interaction between the neutron and crystal -- 2.2.3 Scattering amplitude and differential cross-section -- 2.3 Double Differential Cross-Section -- 2.4 Elastic Scattering -- 2.5 Inelastic Scattering -- Problems -- 3. Elementary Theory of Energy Bands -- 3.1 Development of Computational Methods for Band Structures -- 3.2 Fundamental Problem in an Energy Band Theory -- 3.2.1 Independent-electron approach -- 3.2.2 Correlated-electron approach -- 3.3 Hartree-Fock Method -- 3.3.1 Hartree method -- 3.3.2 Hartree-Fock method -- 3.3.2.1 Slater determinant trial wave function -- 3.3.2.2 Energy average.

3.3.2.3 Direct and exchange terms -- 3.3.2.4 Hartree-Fock equations -- 3.3.3 Application of the Hartree-Fock method to the electron gas -- 3.3.4 Variants of the Hartree-Fock method -- 3.3.4.1 Restricted Hartree-Fock method -- 3.3.4.2 Unrestricted Hartree-Fock method -- 3.4 Plane-Wave Method -- 3.4.1 Numerical issues -- 3.4.1.1 Energy cutoff and basis set of plane waves -- 3.4.1.2 Diagonalization of the Hamiltonian matrix -- 3.4.1.3 Special wave vectors in the first Brillouin zone -- 3.4.2 Slow convergence of the plane-wave method -- 3.5 k · p Method -- 3.5.1 Effective mass tensor -- 3.5.2 Effective mass theory -- 3.6 Augmented-Plane-Wave Method -- 3.6.1 Muffin-tin spheres -- 3.6.2 Muffin-tin potential -- 3.6.3 Augmented plane waves -- 3.6.4 APW secular equation -- 3.7 Linearized-Augmented-Plane-Wave Method -- 3.7.1 New augmented plane wave basis functions -- 3.7.1.1 Energy derivatives of radial wave functions -- 3.7.1.2 New augmented plane waves -- 3.7.2 LAPW secular equation -- 3.8 Linear-Muffin-Tin-Orbitals Method -- 3.9 KKR Method -- 3.10 Orthogonalized-Plane-Wave Method -- 3.10.1 Linear combination of core orbitals -- 3.10.2 Orthogonalized plane waves -- 3.10.3 OPW secular equation -- 3.10.4 OPW pseudopotential -- 3.11 Tight-Binding Method -- 3.11.1 Basis set -- 3.11.2 Secular equation in TBA -- 3.11.3 Application of the tight-binding method to s band -- 3.11.4 Tight-binding band structure in a two-dimensional square lattice -- 3.11.4.1 Dispersion of the tight-binding band -- 3.11.4.2 Density of states of the tight-binding band -- 3.11.4.3 Tight-binding Fermi surface and its variation with the electron filling factor -- 3.11.5 Tight-binding band structures in the cubic crystal system -- 3.11.5.1 Tight-binding band structure in a simple cubic crystal -- 3.11.5.2 Tight-binding band structure in a body-centered cubic crystal.

3.11.5.3 Tight-binding band structure in a face-centered cubic crystal -- Problems -- 4. Determination of Electronic Band Structures -- 4.1 Interaction of Electrons with Electromagnetic Fields -- 4.1.1 Classical Hamiltonian -- 4.1.2 Semi-classical Hamiltonian -- 4.1.3 Quantization of electromagnetic fields -- 4.1.4 Second quantization of electrons -- 4.1.4.1 Operators nk and †nk -- 4.1.4.2 Anticommutation relations between operators nk and †nk -- 4.1.4.3 Physical meanings of operators nk and †nk -- 4.1.4.4 General anticommutation relations between nk and †nk -- 4.1.4.5 States of electrons in a solid -- 4.1.4.6 Quantum field operator of electrons -- 4.1.5 Quantum Hamiltonian -- 4.2 De Haas-van Alphen Effect -- 4.2.1 De Haas-van Alphen effect in a three-dimensional electron gas -- 4.2.1.1 Single-electron levels in a magnetic field -- 4.2.1.2 Density of states of the electron gas in a magnetic field -- 4.2.1.3 Ground-state energy -- 4.2.1.4 Magnetization -- 4.2.1.5 Magnetic susceptibility -- 4.2.1.6 Oscillation period and frequency -- 4.2.2 Lifshits-Kosevich theory of the de Haas-van Alphen effect -- 4.2.3 Techniques for the measurement of the dHvA effect -- 4.2.3.1 Torque method -- 4.2.3.2 Field-modulation method -- 4.2.4 De Haas-van Alphen frequency and amplitude -- 4.2.5 De Haas-van Alphen effect in copper -- 4.2.5.1 Fermi surface of copper -- 4.2.5.2 Experimental results on the features of the Fermi surface of copper -- 4.3 Photoemission Spectroscopy -- 4.3.1 Elementary concepts -- 4.3.1.1 Emission process of photoelectrons -- 4.3.1.2 Kinematics in photoemission process -- 4.3.1.3 Quantum yield -- 4.3.1.4 X-ray and ultraviolet photoemission -- 4.3.1.5 Energy distribution curve -- 4.3.1.6 Modes of photoemission spectroscopy -- 4.3.1.7 Angle-integrated and angle-resolved photoemission spectroscopy.

4.3.2 Methods for the determination of band structures -- 4.3.2.1 Free-electron-like final states -- 4.3.2.2 Triangulation method -- 4.3.2.3 Symmetry method -- 4.3.2.4 Appearance angle method -- 4.3.3 Three-step model -- 4.3.3.1 Photo-excitation of electrons -- 4.3.3.2 Travel of electrons to the surface -- 4.3.3.3 Escape of electrons into the vacuum -- 4.3.3.4 Photocurrent -- 4.3.4 Response theory of photoemission -- 4.3.4.1 Evaluation of matrix elements -- 4.3.5 Correlated electrons -- 4.3.6 Electronic Band Structure of Copper from ARPES -- Problems -- 5. Electron-Phonon Interaction -- 5.1 Electron-Phonon Interaction Hamiltonian -- 5.1.1 Electron-phonon interaction Hamiltonian in metals -- 5.1.1.1 Jellium model -- 5.1.2 Electron-phonon interaction Hamiltonian for ionic crystals -- 5.1.3 Electron-phonon interaction Hamiltonian in insulators -- 5.2 Electron-Phonon Interaction in Metals -- 5.2.1 Electron self-energy -- 5.2.2 Electron-phonon coupling function α2F -- 5.2.2.1 Effective electron-phonon coupling constant -- 5.2.2.2 Moments of the frequency -- 5.2.2.3 Electron self-energy -- 5.2.3 Effective electron-electron interaction -- 5.2.3.1 Effective electron-electron interaction Hamiltonian -Derivation using the formal scattering theory -- 5.2.3.2 Effective electron-electron interaction Hamiltonian -Derivation using the canonical transformation -- 5.3 Polarons -- 5.3.1 Weak-coupling Frohlich polaron -- 5.3.1.1 Effective mass of a Frohlich polaron -- 5.3.1.2 Number of virtual phonons in a Frohlich polaron -- 5.3.1.3 Lattice charge density in a Frohlich polaron -- 5.3.2 Bipolarons -- 5.4 Green's Functions at Zero Temperature -- 5.4.1 Definition of Green's functions in real time -- 5.4.2 Perturbation series of Green's functions -- 5.4.2.1 Perturbation series for the electron Green's function -- 5.4.2.2 Perturbation series of the phonon Green's function.

5.4.3 Zeroth-order Green's functions -- 5.4.3.1 Zeroth-order electron Green's function in an empty band -- 5.4.3.2 Zeroth-order electron Green's function in a degenerate electron gas -- 5.4.3.3 Zeroth-order phonon Green's function -- 5.4.4 Wick's theorem -- 5.4.4.1 Normal product, time-ordered product, and contraction -- 5.4.4.2 Statement of Wick's theorem -- 5.4.4.3 Proof of Wick's theorem -- 5.4.5 Application of Wick's theorem to phonon operators -- 5.4.6 Application of Wick's theorem to electron operators -- 5.4.7 Second-order self-energies -- 5.4.7.1 Second-order electron self-energy -- 5.4.7.2 Second-order phonon self-energy -- 5.4.8 Feynman rules -- 5.4.9 Dyson equation -- 5.4.9.1 Fourth-order electron self-energy -- 5.4.9.2 Dyson equation for electron Green's function -- 5.4.9.3 Dyson equation for phonon Green's function -- 5.4.10 Migdal's theorem -- 5.4.11 Analytic properties of Green's functions -- 5.4.11.1 Spectral functions -- 5.4.12 Retarded and advanced Green's functions -- 5.4.12.1 Spectral representations -- 5.4.12.2 Kramers-Kronig relations -- 5.4.12.3 Relations with the time-ordered Green's functions -- 5.4.12.4 Energy, lifetime, and effective mass of an electronic excitation -- 5.4.12.5 Retarded and advanced Green's functions for phonons -- 5.5 Green's Functions at Finite Temperatures -- 5.5.1 Dynamics in imaginary time -- 5.5.2 S-matrix -- 5.5.3 Definitions of Matsubara Green's functions -- 5.5.4 Matsubara frequencies -- 5.5.4.1 Matsubara frequencies for electrons -- 5.5.4.2 Matsubara frequencies for phonons -- 5.5.5 Perturbation series for Matsubara Green's functions -- 5.5.5.1 Perturbation series for the electron Matsubara Green's function -- 5.5.5.2 Perturbation series for the phonon Matsubara Green's function -- 5.5.6 Zeroth-order Matsubara Green's functions -- 5.5.7 Zeroth-order Matsubara Green's function for electrons.

5.5.8 Zeroth-order Matsubara Green's function for phonons.
Abstract:
This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids". The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great detail.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: