Cover image for Algebraic Geometry Modeling in Information Theory.
Algebraic Geometry Modeling in Information Theory.
Title:
Algebraic Geometry Modeling in Information Theory.
Author:
Martinez-Moro, Edgar.
ISBN:
9789814335768
Personal Author:
Physical Description:
1 online resource (334 pages)
Series:
Series on Coding Theory and Cryptology ; v.8

Series on Coding Theory and Cryptology
Contents:
Contents -- Preface -- Sage: A Basic Overview for Coding Theory and Cryptography D. Joyner -- 0.1. Introduction -- 0.2. What is Sage? -- 0.2.1. Functionality of selected components of Sage -- 0.2.2. History -- 0.2.3. Why Python? -- 0.2.4. The CLI -- 0.2.5. The GUI -- 0.2.6. Open source philosophy -- 0.3. Coding theory functionality in Sage -- 0.3.1. General constructions -- 0.3.2. Coding theory functions -- 0.3.3. Weight enumerator polynomial -- 0.3.4. More code constructions -- 0.3.5. Automorphism group of a code -- 0.3.6. Even more code constructions -- 0.3.7. Block designs and codes -- 0.3.8. Special constructions -- 0.3.9. Coding theory bounds -- 0.3.10. Asymptotic bounds -- 0.4. Cryptography in Sage -- 0.4.1. Classical cryptography -- 0.4.2. Algebraic cryptosystems -- 0.4.3. RSA -- 0.4.4. Discrete logs -- 0.4.5. Diffle-Hellman -- 0.4.6. Linear feedback shift registers -- 0.4.7. BBS streamcipher -- 0.4.8. Blum-Goldwasser cryptosystem -- 0.5. Miscellaneous topics -- 0.5.1. Duursma zeta functions -- 0.5.2. Self-dual codes -- 0.5.3. Cool example (on self-dual codes) -- 0.6. Coding theory not implemented in Sage -- References -- Aspects of Random Network Coding O. Geil and C. Thomsen -- 1.1. Introduction -- 1.2. The network coding problem -- 1.2.1. Linear network coding for multicast -- 1.2.2. A polynomial time algorithm for solving the multicast problem -- 1.3. Random network coding -- 1.3.1. The algebraic approach -- 1.3.2. The combinatorial approach -- 1.3.2.1. Flow bounds -- 1.3.2.2. The bounds by Balli, Yan, and Zhang -- 1.4. Bibliographic notes -- References -- Steganography from a Coding Theory Point of View C. Munuera -- 2.1. Introduction -- 2.1.1. What is steganography? -- 2.1.2. Digital steganography -- 2.1.3. Steganography, cryptography and watermarking -- 2.1.4. About this chapter -- 2.2. Steganographic systems -- 2.2.1. The cover.

2.2.2. Steganographic schemes -- 2.2.3. Selection rules -- 2.2.4. Parameters -- 2.2.5. Proper stegoschemes -- 2.3. Error-Correcting codes -- 2.3.1. Correcting errors -- 2.3.2. Linear codes over fields -- 2.3.3. An example: binary Hamming codes -- 2.3.4. Generalized Hamming weights for linear codes -- 2.4. Linking the problems -- 2.4.1. Stegoschemes and error-correcting codes -- 2.4.2. Group codes and stegoschemes -- 2.4.3. Linear stegoschemes over rings Zq -- 2.4.4. Linear stegoschemes over fields -- 2.5. Bounds -- 2.5.1. The domain of stegoschemes -- 2.5.2. Balls and entropy -- 2.5.3. A Hamming-like bound -- 2.5.4. Asymptotic bounds -- 2.5.5. Perfect stegoschemes -- 2.5.6. Another new problem for coding theory -- 2.6. Nonshared selection rules -- 2.6.1. Wet paper codes -- 2.6.2. Solvability and the weight hierarchy of codes -- 2.6.3. The rank of random matrices -- 2.7. The ZZW embedding construction -- 2.7.1. Description of the method -- 2.7.2. Asymptotic behavior -- 2.8. Bibliographical notes and further reading -- Acknowledgments -- References -- An Introduction to LDPC Codes I. Marquez-Corbella and E. Martınez-Moro -- 3.1. Introduction -- 3.2. Representation for LDPC codes -- 3.2.1. Tanner graph -- 3.3. Communication channels -- 3.4. Decoding algorithms -- 3.4.1. Maximum-Likelihood Decoding -- 3.4.2. Iterative decoding -- 3.4.2.1. Min-Sum Decoding -- 3.4.2.2. Sum-Product Decoding -- 3.4.3. Linear Programming Decoding -- 3.5. Connections between LP and ML decoding -- 3.6. Pseudocodewords -- 3.7. Connections between LP and iterative decoding -- References -- Numerical Semigroups and Codes M. Bras-Amoros -- 4.1. Introduction -- 4.2. Numerical semigroups -- 4.2.1. Paradigmatic example: Weierstrass semigroups on algebraic curves -- 4.2.1.1. Algebraic curves -- 4.2.1.2. Weierstrass semigroup -- 4.2.1.3. Examples -- 4.2.2. Basic notions and problems.

4.2.2.1. Genus, conductor, gaps, non-gaps, enumeration -- 4.2.2.2. Generators, Apery set -- 4.2.2.3. Frobenius' coin exchange problem -- 4.2.2.4. Hurwitz question -- 4.2.2.5. Wilf conjecture -- 4.2.3. Classification -- 4.2.3.1. Symmetric and pseudo-symmetric numerical semigroups -- 4.2.3.2. Arf numerical semigroups -- 4.2.3.3. Numerical semigroups generated by an interval -- 4.2.3.4. Acute numerical semigroups -- 4.2.4. Characterization -- 4.2.4.1. Homomorphisms of semigroups -- 4.2.4.2. The operation, the sequence, and the sequence -- 4.2.4.3. Characterization of a numerical semigroup by -- 4.2.4.4. Characterization of a numerical semigroup by -- 4.2.4.5. Characterization of a numerical semigroup by -- 4.2.5. Counting -- 4.3. Numerical semigroups and codes -- 4.3.1. One-point codes and their decoding -- 4.3.1.1. One-point codes -- 4.3.1.2. Decoding one-point codes -- 4.3.2. The sequence, classical codes, and Feng-Rao im- proved codes -- 4.3.2.1. The sequence and the minimum distance of classical codes -- 4.3.2.2. On the order bound on the minimum distance -- 4.3.2.3. The sequence and Feng-Rao improved codes -- 4.3.2.4. On the improvement of the Feng-Rao improved codes -- 4.3.3. Generic errors and the sequence -- 4.3.3.1. Generic errors -- 4.3.3.2. Conditions for correcting generic errors -- 4.3.3.3. Comparison of improved codes and classical codes correct- ing generic errors -- 4.3.3.4. Comparison of improved codes correcting generic errors and Feng-Rao improved codes -- Further reading -- Acknowledgments -- References -- Codes, Arrangements and Matroids R. Jurrius and R. Pellikaan -- 5.1. Introduction -- 5.2. Error-correcting codes -- 5.2.1. Codes and Hamming distance -- 5.2.2. Linear codes -- 5.2.3. Generator matrix -- 5.2.4. Parity check matrix -- 5.2.5. Inner product and dual codes -- 5.2.6. The Hamming and simplex codes.

5.2.7. Singleton bound and MDS codes -- 5.3. Weight enumerators and error probability -- 5.3.1. Weight spectrum -- 5.3.2. The decoding problem -- 5.3.3. The q-ary symmetric channel -- 5.3.4. Error probability -- 5.4. Codes, projective systems and arrangements -- 5.5. The extended and generalized weight enumerator -- 5.5.1. Generalized weight enumerators -- 5.5.2. Extended weight enumerator -- 5.5.3. Puncturing and shortening of codes -- 5.5.4. Connections -- 5.5.5. MDS-codes -- 5.6. Matroids and codes -- 5.6.1. Matroids -- 5.6.2. Graphs, codes and matroids -- 5.6.3. The weight enumerator and the Tutte polynomial -- 5.6.4. Deletion and contraction of matroids -- 5.6.5. MacWilliams type property for duality -- 5.7. Posets and lattices -- 5.7.1. Posets, the Mobius function and lattices -- 5.7.2. Geometric lattices -- 5.7.3. Geometric lattices and matroids -- 5.8. The characteristic polynomial -- 5.8.1. The characteristic and coboundary polynomial -- 5.8.2. The M obius polynomial and Whitney numbers -- 5.8.3. Minimal codewords and subcodes -- 5.8.4. The characteristic polynomial of an arrangement -- 5.8.5. The characteristic polynomial of a code -- 5.8.6. Examples and counterexamples -- 5.9. Overview of polynomial relations -- 5.10. Further reading and open problems -- 5.10.1. Multivariate and other polynomials -- 5.10.2. The coset leader weight enumerator -- 5.10.3. Graph codes -- 5.10.4. The reconstruction problem -- 5.10.5. Questions concerning the M obius polynomial -- 5.10.6. Monomial conjectures -- 5.10.7. Complexity issues -- 5.10.8. The zeta function -- References.
Abstract:
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: