
The Wigner Monte Carlo Method for Nanoelectronic Devices : A Particle Description of Quantum Transport and Decoherence.
Title:
The Wigner Monte Carlo Method for Nanoelectronic Devices : A Particle Description of Quantum Transport and Decoherence.
Author:
Querlioz, Damien.
ISBN:
9781118618448
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (210 pages)
Series:
Iste
Contents:
Cover -- The Wigner Monte Carlo Method for Nanoelectronic Devices -- Title Page -- Copyright Page -- Table of Contents -- Symbols -- Abbreviations -- Introduction -- Acknowledgements -- Chapter 1. Theoretical Framework of Quantum Transport in Semiconductors and Devices -- 1.1. The fundamentals: a brief introduction to phonons, quasi-electrons and envelope functions -- 1.1.1. The basic concepts: band structure and phonon dispersion -- 1.1.2. Quasi-electron/phonon scattering -- 1.1.3. Quasi-electron/quasi-electron and quasi-electron/impurity scattering -- 1.2. The semi-classical approach of transport -- 1.2.1. The Boltzmann transport equation -- 1.2.2. Quantum corrections to the Boltzmann equation -- 1.3. The quantum treatment of envelope functions -- 1.3.1. The density matrix formalism -- 1.3.2. The Wigner function formalism -- 1.3.3. The Green's functions formalism -- 1.4. The two main problems of quantum transport -- 1.4.1. The first problem: the modeling of contacts -- 1.4.2. The second problem: the treatment of collisions/scattering in quantum transport -- Chapter 2. Particle-based Monte Carlo Approach to Wigner-Boltzmann Device Simulation -- 2.1. The particle Monte Carlo technique to solve the BTE -- 2.1.1. Principles and algorithm -- 2.1.2. Multi-subband transport: mode-space approach -- 2.2. Extension of the particle Monte Carlo technique to the WBTE: principles -- 2.2.1. The Wigner paths method -- 2.2.2. The "full Monte Carlo" method -- 2.2.3. The "continuous affinity" method technique -- 2.3. Simple validations via two typical cases -- 2.3.1. First validation of the quantum mechanical treatment: interaction of a wave packet with a tunneling barrier -- 2.3.2. Validation of the semi-classical treatment: N+/N/N+ diode -- 2.4. Conclusion -- Chapter 3. Application of the Wigner Monte Carlo Method to RTD, MOSFET and CNTFET.
3.1. The resonant tunneling diode (RTD) -- 3.1.1. Introduction to the RTD -- 3.1.2. Model, simulated structure and current-voltage characteristics -- 3.1.3. Microscopic quantities -- 3.1.4. Comparison with experiment -- 3.1.5. Comparison with the Green's function formalism -- 3.2. The double-gate metal-oxide-semiconductor field-effect transistor (DG-MOSFET) -- 3.2.1. Introduction to the DG-MOSFET -- 3.2.2. Simulated devices -- 3.2.3. Model: transport and scattering -- 3.2.4. Subband profiles and mode-space wave functions -- 3.2.5. Quantum transport effects -- 3.2.6. Impact of scattering -- 3.2.7. Design of nano-MOSFET and factors of merit for CMOS applications -- 3.2.8. Degeneracy effects in source and drain access -- 3.2.9. Some comparisons with experiments -- 3.3. The carbon nanotube field-effect transistor (CNTFET) -- 3.3.1. Introduction to the CNTFET -- 3.3.2. Simulated device -- 3.3.3. Model: band structure, transport and scattering -- 3.3.4. Quantum transport effect -- 3.4. Conclusion -- 3.4.1. Summary of main results -- 3.4.2. Prospective conclusions regarding CMOS devices -- Chapter 4. Decoherence and Transition from Quantum to Semi-classical Transport -- 4.1. Simple illustration of the decoherence mechanism -- 4.2. Coherence and decoherence of Gaussian wave packets in GaAs -- 4.2.1. Introduction -- 4.2.2. Decoherence of free wave packets in GaAs -- 4.2.3. Impact of decoherence on the interaction of a wave packet with single or double tunnel barrier -- 4.3. Coherence and decoherence in RTD: transition between semi-classical and quantum regions -- 4.3.1. Decoherence in RTD -- 4.3.2. Transition between quantum and semi-classical regions -- 4.4. Quantum coherence and decoherence in DG-MOSFET -- 4.4.1. Electron decoherence -- 4.4.2. Emergence of semi-classical behavior -- 4.5. Conclusion -- Conclusion.
Appendix A. Average Value of Operators in the Wigner Formalism -- Appendix B. Boundaries of the Wigner Potential -- Appendix C. Hartree Wave Function -- Appendix D. Asymmetry Between Phonon Absorption and Emission Rates -- Appendix E. Quantum Brownian Motion -- Appendix F. Purity in the Wigner formalism -- Appendix G. Propagation of a Free Wave Packet Subject to Quantum Brownian Motion -- Appendix H. Coherence Length at Thermal Equilibrium -- Bibliography -- Index.
Abstract:
This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View