Cover image for Refinery Engineering : Integrated Process Modeling and Optimization.
Refinery Engineering : Integrated Process Modeling and Optimization.
Title:
Refinery Engineering : Integrated Process Modeling and Optimization.
Author:
Chang, Ai-Fu.
ISBN:
9783527666867
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (523 pages)
Contents:
Title Page -- Contents -- Foreword by Steven R. Cope -- Foreword by Lawrence B. Evans -- Preface -- Acknowledgements -- About the Authors -- 1 Characterization, Physical and Thermodynamic Properties of Oil Fractions -- 1.1 Crude Assay -- 1.1.1 Bulk Properties -- 1.1.2 Fractional Properties -- 1.1.3 Interconversion of Distillation Curves -- 1.2 Pseudocomponent Generation Based on Boiling-Point Ranges -- 1.3 Workshop 1.1 - Interconvert Distillation Curves -- 1.4 Workshop 1.2 - Extrapolate an Incomplete Distillation Curve -- 1.5 Workshop 1.3 - Calculate MeABP of a Given Assay -- 1.6 Workshop 1.4 - Duplicate the Oil Fraction in Aspen HYSYS Petroleum Refining -- 1.7 Property Requirements for Refinery Process Models -- 1.8 Physical Properties -- 1.8.1 Estimating Minimal Physical Properties for Pseudocomponents -- 1.8.2 Molecular Weight -- 1.8.3 Critical Properties -- 1.8.4 Liquid Density -- 1.8.5 Ideal Gas Heat Capacity -- 1.8.6 Other Derived Physical Properties -- 1.9 Process Thermodynamics -- 1.9.1 Thermodynamic Models -- 1.9.2 Mixed or Activity-Coeff icient Approach -- 1.9.3 Equation-of-State Approach -- 1.10 Miscellaneous Physical Properties for Refinery Modeling -- 1.10.1 Two Approaches for Estimating Fuel Properties -- 1.10.2 Flash Point -- 1.10.3 Freeze Point -- 1.10.4 PNA Composition -- 1.11 Conclusions -- 1.12 Nomenclature -- 1.13 References -- 2 Atmospheric Distillation Unit -- 2.1 Introduction -- 2.2 Scope of the Chapter -- 2.3 Process Overview -- 2.3.1 Desalting -- 2.3.2 Preheat Train and Heat Recovery -- 2.3.3 Atmospheric Distillation -- 2.4 Model Development -- 2.5 Feed Characterization -- 2.6 Data Requirements and Validation -- 2.7 Representative Atmospheric Distillation Unit -- 2.8 Building the Model in Aspen HYSYS -- 2.8.1 Entering the Crude Information -- 2.8.2 Selection of a Thermodynamic System.

2.8.3 Crude Charge and Prefractionation Units -- 2.8.4 Atmospheric Distillation Column - Initial -- 2.8.5 Atmospheric Distillation Column - Side Strippers -- 2.8.6 Atmospheric Distillation Column - Pumparounds -- 2.8.7 Atmospheric Distillation Column - Final Column Convergence -- 2.8.8 Post-Convergence -- 2.9 Results -- 2.10 Model Applications to Process Optimization -- 2.10.1 Improve the 5% Distillation Point for an Individual Cut -- 2.10.2 Change Yield of a Given Cut -- 2.11 Workshop 2.1 -Rebuild Model Using "Back-blending" Procedure -- 2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager -- 2.11.2 Import Distillation Data into Aspen HYSYS Oil Manager -- 2.11.3 Reorganize Process Flowsheet -- 2.11.4 Converging Column Model -- 2.11.5 Comparison of Results -- 2.12 Workshop 2.2 - Investigate Changes in Product Profiles with New Product Demands -- 2.12.1 Update Column Specifications -- 2.12.2 Vary Draw Rate of LGO -- 2.13 Conclusions -- 2.14 Nomenclature -- 2.15 References -- 3 Vacuum Distillation Unit -- 3.1 Process Description -- 3.2 Data Reconciliation -- 3.2.1 Required Data -- 3.2.2 Representation of the Atmospheric Residue -- 3.2.3 Makeup of Gas Streams -- 3.3 Model Implementation -- 3.3.1 Before Building the Process Flowsheet -- 3.3.2 Build a Simplified Model -- 3.3.3 Develop the Rigorous Simulation from a Simplified Model -- 3.4 Model Applications to Process Optimization - VDU Deep-Cut Operation -- 3.5 Workshop - Using Aspen HYSYS Petroleum Refining to Implement the Deep-Cut Operation -- 3.6 References -- 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process -- 4.1 Introduction -- 4.2 Process Description -- 4.2.1 Riser-Regenerator Complex -- 4.2.2 Downstream Fractionation -- 4.3 Process Chemistry -- 4.4 Literature Review -- 4.4.1 Kinetic Models -- 4.4.2 Unit-Level Models -- 4.5 Aspen HYSYS Petroleum Refining FCC Model.

4.5.1 Slip Factor and Average Voidage -- 4.5.2 21-Lump Kinetic Model -- 4.5.3 Catalyst Deactivation -- 4.6 Calibrating the Aspen HYSYS Petroleum Refining FCC Model -- 4.7 Fractionation -- 4.8 Mapping Feed Information to Kinetic Lumps -- 4.8.1 Fitting Distillation Curves -- 4.8.2 Inferring Molecular Composition -- 4.8.3 Convert Kinetic Lumps to Fractionation Lumps -- 4.9 Overall Modeling Strategy -- 4.10 Results -- 4.11 Model Applications to Process Optimization -- 4.11.1 Improving Gasoline Yield -- 4.11.2 Increasing Unit Throughput -- 4.11.3 Sulfur Content in Gasoline -- 4.12 Model Application to Refinery Production Planning -- 4.13 Workshop 4.1: Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining -- 4.13.1 Introduction -- 4.13.2 Process Overview -- 4.13.3 Process Data -- 4.13.4 Aspen HYSYS and Initial Component and Thermodynamics Setup -- 4.13.5 Workshop 4.1: Basic FCC Model -- 4.13.6 FCC Feed Configuration -- 4.13.7 FCC Catalyst Configuration -- 4.13.8 FCC Operating Variable Configuration -- 4.13.9 Initial Model Solution -- 4.13.10 Viewing Model Results -- 4.14 Workshop 4.2: Calibrating Basic FCC Model -- 4.15 Workshop 4.3: Build Main Fractionator and Gas Plant System -- 4.16 Workshop 4.4: Model Applications to Process Optimization - Perform Case Study to Identify Different Gasoline Production Sce -- 4.17 Workshop 4.5: Model Application to Production Planning - Generate DELTA-BASE Vectors for Linear-Programming (LP)-Based Prod -- 4.18 Conclusions -- 4.20 Nomenclature -- 4.21 References -- 5 Predictive Modeling of the Continuous Catalyst Regeneration (CCR) Reforming Process -- 5.1 Introduction -- 5.2 Process Overview -- 5.3 Process Chemistry -- 5.4 Literature Review -- 5.4.1 Kinetic Models and Networks -- 5.4.2 Unit-Level models -- 5.5 Aspen HYSYS Petroleum Ref ining Catalytic Reformer Model -- 5.6 Thermophysical Properties.

5.7 Fractionation System -- 5.8 Feed Characterization -- 5.9 Model Implementation -- 5.9.1 Data Consistency -- 5.9.2 Feed Characterization -- 5.9.3 Calibration -- 5.10 Overall Modeling Strategy -- 5.11 Results -- 5.12 Model Applications to Process Optimization -- 5.12.1 Effect of Reactor Temperature on Process Yield -- 5.12.2 Effect of Feed Rate on Process Yield -- 5.12.3 Combined Effects on Process Yield -- 5.12.4 Effect of Feedstock Quality on Process Yield -- 5.12.5 Chemical Feedstock Production -- 5.12.6 Energy Utilization and Process Performance -- 5.13 Model Applications to Refinery Production Planning -- 5.14 Workshop 5.1: Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining -- 5.14.1 Introduction -- 5.14.2 Process Overview and Relevant Data -- 5.14.3 Aspen HYSYS and Initial Component and Thermodynamics Setup -- 5.14.4 Basic Reformer Configuration -- 5.14.5 Input Feedstock and Process Variables -- 5.14.6 Solver Parameters and Running Initial Model -- 5.14.7 Viewing Model Results -- 5.14.8 Updating Results with Molecular Composition Information -- 5.15 Workshop 5.2: Model Calibration -- 5.16 Workshop 5.3: Build a Downstream Fractionation -- 5.17 Workshop 5.4: Case Study to Vary RON and Product Distribution Profile -- 5.18 Conclusions -- 5.19 Nomenclature -- 5.20 References -- 6 Predictive Modeling of the Hydroprocessing Units -- 6.1 Introduction -- 6.2 Aspen HYSYS Petroleum Refining HCR Modeling Tool -- 6.3 Process Description -- 6.3.1 MP HCR Process -- 6.3.2 HP HCR Process -- 6.4 Model Development -- 6.4.1 Workf low of Developing an Integrated HCR Process Model -- 6.4.2 Data Acquisition -- 6.4.3 Mass Balance -- 6.4.4 Reactor Model Development -- 6.4.4.1 MP HCR Reactor Model -- 6.4.4.2 HP HCR Reactor Model -- 6.4.4.2.1 Equivalent Reactor -- 6.4.4.2.2 Reconciliation of HP HCR Reactor Model.

6.4.5 Delumping of the Reactor Model Eff luent and Fractionator Model Development -- 6.4.5.1 Applying the Gauss-Legendre Quadrature to Delump the Reactor Model Eff luent -- 6.4.5.2 Key Issue of the Building Fractionator Model: Overall Stage Efficiency Model -- 6.4.5.3 Verification of the Delumping Method: Gaussian-Legendre Quadrature -- 6.4.6 Product Property Correlation -- 6.5 Modeling Results of MP HCR Process -- 6.5.1 Performance of the Reactor and Hydrogen Recycle System -- 6.5.2 Performance of Fractionators -- 6.5.3 Product Yields -- 6.5.4 Distillation Curves of Liquid Products -- 6.5.5 Product Property -- 6.6 Modeling Results of HP HCR Process -- 6.6.1 Performance of the Reactor and Hydrogen Recycle System -- 6.6.2 Performance of Fractionators -- 6.6.3 Product Yields -- 6.6.4 LPG Composition and Distillation Curves of Liquid Products -- 6.6.5 Product Property -- 6.7 Model Applications to Process Optimization -- 6.7.1 H2-to-Oil Ratio vs. Product Distribution, Remained Catalyst Life, and Hydrogen Consumption -- 6.7.2 WART versus Feed Flow Rate versus Product Distribution -- 6.8 Model Application - Delta-Base Vector Generation -- 6.9 Conclusions -- 6.10 Workshop 6.1 - Build Preliminary Reactor Model of HCR Process -- 6.11 Workshop 6.2 - Calibrate Preliminary Reactor Model to Match Plant Data -- 6.12 Workshop 6.3 - Model Applications to Process Optimization -- 6.13 Workshop 6.4 - Connect Reactor Model to Fractionator Simulation -- 6.14 Nomenclature -- 6.15 References -- Supporting Materials: List of Computer Files -- Subject Index.
Abstract:
A pioneering and comprehensive introduction to the complex subject of integrated refinery process simulation, using many of the tools and techniques currently employed in modern refineries. Adopting a systematic and practical approach, the authors include the theory, case studies and hands-on workshops, explaining how to work with real data. As a result, senior-level undergraduate and graduate students, as well as industrial engineers learn how to develop and use the latest computer models for the predictive modeling and optimization of integrated refinery processes. Additional material is available online providing relevant spreadsheets and simulation files for all the models and examples presented in the book.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: