
Carbon Nanotubes and Nanosensors : Vibration, Buckling and Balistic Impact.
Title:
Carbon Nanotubes and Nanosensors : Vibration, Buckling and Balistic Impact.
Author:
Elishakoff, Isaac.
ISBN:
9781118563304
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (437 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Chapter 1. Introduction -- 1.1. The need of determining the natural frequencies and buckling loads of CNTs -- 1.2. Determination of natural frequencies of SWCNT as a uniform beam model and MWCNT during coaxial deflection -- 1.3. Beam model of MWCNT -- 1.4. CNTs embedded in an elastic medium -- Chapter 2. Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes -- 2.1. Background -- 2.2. Analysis -- 2.3. Simply supported DWCNT: exact solution -- 2.4. Simply supported DWCNT: Bubnov-Galerkin method -- 2.5. Simply supported DWCNT: Petrov-Galerkin method -- 2.6. Clamped-clamped DWCNT: Bubnov-Galerkin method -- 2.7. Clamped-clamped DWCNT: Petrov-Galerkin method -- 2.8. Simply supported-clamped DWCNT -- 2.9. Clamped-free DWCNT -- 2.10. Comparison with results of Natsuki et al. [NAT 08a] -- 2.11. On closing the gap on carbon nanotubes -- 2.11.1. Linear analysis -- 2.11.2. Nonlinear analysis -- 2.12. Discussion -- Chapter 3. Free Vibrations of the Triple-Walled Carbon Nanotubes -- 3.1. Background -- 3.2. Analysis -- 3.3. Simply supported TWCNT: exact solution -- 3.4. Simply supported TWCNT: approximate solutions -- 3.5. Clamped-clamped TWCNT: approximate solutions -- 3.6. Simply supported-clamped TWCNT: approximate solutions -- 3.7. Clamped-free TWCNT: approximate solutions -- 3.8. Summary -- Chapter 4. Exact Solution for Natural Frequencies of Clamped-Clamped Double-Walled Carbon Nanotubes -- 4.1. Background -- 4.2. Analysis -- 4.3. Analytical exact solution -- 4.4. Numerical results and discussion -- 4.4.1. Bubnov-Galerkin method -- 4.5. Discussion -- 4.6. Summary -- Chapter 5. Natural Frequencies of Carbon Nanotubes Based on a Consistent Version of Bresse-Timoshenko Theory -- 5.1. Background -- 5.2. Bresse-Timoshenko equations for homogeneous beams.
5.3. DWCNT modeled on the basis of consistent Bresse-Timoshenko equations -- 5.4. Numerical results and discussion -- Chapter 6. Natural Frequencies of Double-Walled Carbon Nanotubes Based on Donnell Shell Theory -- 6.1. Background -- 6.2. Donnell shell theory for the vibration of MWCNTs -- 6.3. Donnell shell theory for the vibration of a simply supported DWCNT -- 6.4. DWCNT modeled on the basis of simplified Donnell shell theory -- 6.5. Further simplifications of the Donnell shell theory -- 6.6. Summary -- Chapter 7. Buckling of a Double-Walled Carbon Nanotube -- 7.1. Background -- 7.2. Analysis -- 7.3. Simply supported DWCNT: exact solution -- 7.4. Simply supported DWCNT: Bubnov-Galerkin method -- 7.5. Simply supported DWCNTs: Petrov-Galerkin method -- 7.6. Clamped-clamped DWCNT -- 7.7. Simply supported-clamped DWCNT -- 7.8. Buckling of a clamped-free DWCNT by finite difference method -- 7.9. Buckling of a clamped-free DWCNT by Bubnov-Galerkin method -- 7.9.1. Analysis -- 7.9.2. Results -- 7.9.3. Conclusion -- 7.10. Summary -- Chapter 8. Ballistic Impact on a Single-Walled Carbon Nanotube -- 8.1. Background -- 8.2. Analysis -- 8.3. Numerical results and discussion -- Chapter 9. Clamped-Free Double-Walled Carbon Nanotube-Based Mass Sensor -- 9.1. Introduction -- 9.2. Basic equations -- 9.3. Vibration frequencies of DWCNT with light bacterium at the end of outer nanotube -- 9.4. Vibration frequencies of DWCNT with heavy bacterium at the end of outer nanotube -- 9.5. Vibration frequencies of DWCNT with light bacterium at the end of inner nanotube -- 9.6. Vibration frequencies of DWCNT with heavy bacterium at the end of inner nanotube -- 9.7. Numerical results -- 9.8. Effective stiffness and effective mass of the double-walled carbon nanotube sensor -- 9.8.1. Introduction -- 9.8.2. Bubnov-Galerkin method -- 9.8.3. Finite-difference method.
9.8.4. Effective mass of DWCNT with bacterium at the end -- 9.8.5. Conclusions -- 9.9. Virus sensor based on single-walled carbon nanotube treated as Bresse-Timoshenko beam -- 9.9.1. Introduction -- 9.9.2. Analysis -- 9.9.3. Results -- 9.9.4. Mimivirus -- 9.10. Conclusion -- Chapter 10. Some Fundamental Aspects of Non-local Beam Mechanics for Nanostructures Applications -- 10.1. Background on the need of non-locality -- 10.2. Non-local beam models -- 10.2.1. Beam mechanics and Eringen's non-local model -- 10.2.2. Beam mechanics and gradient elasticity model -- 10.2.3. How to connect gradient elasticity with non-local integral models? -- 10.3. The cantilever case: a structural paradigm -- 10.3.1. Introduction -- 10.3.2. Eringen's integral model -- 10.3.3. Gradient elastic beam -- 10.3.4. Non-local elastic beam based on strain energy functional with squared non-local curvature -- 10.3.5. New non-local elastic beam model based on strain energy functional with mixed local and non-local curvatures -- 10.4. Euler-Bernoulli beam: Eringen's based model -- 10.4.1. Buckling of non-local Euler-Bernoulli beams -- 10.4.2. Vibrations of non-local Euler-Bernoulli beams -- 10.5. Euler-Bernoulli beam: gradient elasticity model -- 10.5.1. Buckling of gradient elasticity Euler-Bernoulli beams -- 10.5.2. Vibrations of gradient elasticity Euler-Bernoulli beams -- 10.6. Euler-Bernoulli beam: hybrid non-local elasticity model -- 10.6.1. Buckling of hybrid non-local Euler-Bernoulli beams -- 10.6.2. Vibrations of hybrid non-local Euler-Bernoulli beams -- 10.7. Timoshenko beam: Eringen's based model -- 10.7.1. Buckling of non-local Engesser Timoshenko beams -- 10.7.2. Buckling of non-local Haringx Timoshenko beams -- 10.7.3. Vibrations of non-local Timoshenko beams -- 10.8. Timoshenko beam: gradient elasticity model.
10.8.1. Buckling of gradient Timoshenko beam with Engesser's theory -- 10.8.2. Buckling of gradient Timoshenko beam with Haringx's theory -- 10.8.3. Vibrations of gradient Timoshenko beam -- 10.8.4. Some other Timoshenko gradient elasticity beam models -- 10.9. Timoshenko beam, hybrid non-local elasticity model -- 10.9.1. Buckling of the hybrid Engesser's non-local Timoshenko beam -- 10.9.2. Vibrations of the hybrid non-local Timoshenko beam -- 10.10. Higher order shear beam: Eringen's based model -- 10.10.1. Buckling of non-local higher order shear beam -- 10.10.2. Vibrations of non-local higher order shear beam -- 10.11. Higher order shear beam, gradient elasticity model -- 10.11.1. Buckling of gradient Engesser higher order shear beam -- 10.11.2. Vibrations of gradient higher order shear beam -- 10.12. Validity of the results for double-nanobeam systems -- 10.12.1. Buckling of non-local double-nanobeam systems -- 10.12.2. Vibrations of non-local double-nanobeam systems -- 10.12.3. Buckling of gradient double-nanobeam systems -- 10.12.4. Vibrations of gradient double-nanobeam systems -- Chapter 11. Surface Effects on the Natural Frequencies of Double-Walled Carbon Nanotubes -- 11.1. Background -- 11.2. Analysis -- 11.2.1. Non-local Bresse-Timoshenko beam theory -- 11.2.2. Van der Waals interaction forces -- 11.2.3. Natural vibration of DWCNTs -- 11.2.4. Free vibration of embedded DWCNTs -- 11.3. Results and discussion -- 11.4. Surface effects on buckling of nanotubes -- 11.5. Summary -- Chapter 12. Summary and Directions for Future Research -- Appendix A. Elements of the Matrix A -- Appendix B. Elements of the Matrix B -- Appendix C. Coefficients of the Polynomial Equation [7.116] -- Appendix D. Coefficients of the Polynomial Equation [9.25] -- Appendix E. Coefficients of the Polynomial Equation [9.35].
Appendix F. Coefficients of the Polynomial Equation [9.40] -- Appendix G. Coefficients of the Polynomial Equation [9.54] -- Appendix H. Coefficients of the Polynomial Equation [9.63] -- Appendix I. Coefficients of the Polynomial Equation [9.67] -- Appendix J. An Equation Both More Consistent and Simpler than the Bresse-Timoshenko Equation -- Bibliography -- Author Index -- Subject Index.
Abstract:
Preface xi Chapter 1. Introduction 1 1.1. The need of determining the natural frequencies and buckling loads of CNTs 8 1.2. Determination of natural frequencies of SWCNT as a uniform beam model and MWCNT during coaxial deflection 8 1.3. Beam model of MWCNT 9 1.4. CNTs embedded in an elastic medium 10 Chapter 2. Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes 13 2.1. Background 13 2.2. Analysis 15 2.3. Simply supported DWCNT: exact solution 15 2.4. Simply supported DWCNT: Bubnov-Galerkin method 18 2.5. Simply supported DWCNT: Petrov-Galerkin method 20 2.6. Clamped-clamped DWCNT: Bubnov-Galerkin method 23 2.7. Clamped-clamped DWCNT: Petrov-Galerkin method 25 2.8. Simply supported-clamped DWCNT 27 2.9. Clamped-free DWCNT 30 2.10. Comparison with results of Natsuki et al. [NAT 08a] 33 2.11. On closing the gap on carbon nanotubes 34 2.12. Discussion 45 Chapter 3. Free Vibrations of the Triple-Walled Carbon Nanotubes 47 3.1. Background 47 3.2. Analysis 48 3.3. Simply supported TWCNT: exact solution 49 3.4. Simply supported TWCNT: approximate solutions 51 3.5. Clamped-clamped TWCNT: approximate solutions 54 3.6. Simply supported-clamped TWCNT: approximate solutions 57 3.7. Clamped-free TWCNT: approximate solutions 60 3.8. Summary 63 Chapter 4. Exact Solution for Natural Frequencies of Clamped-Clamped Double-Walled Carbon Nanotubes 65 4.1. Background 65 4.2. Analysis 67 4.3. Analytical exact solution 72 4.4. Numerical results and discussion 77 4.5. Discussion 82 4.6. Summary 83 Chapter 5. Natural Frequencies of Carbon Nanotubes Based on a Consistent Version of Bresse-Timoshenko Theory 85 5.1. Background 85 5.2. Bresse-Timoshenko equations for homogeneous beams 86 5.3. DWCNT modeled on the basis of consistent Bresse-Timoshenko equations 88 5.4. Numerical
results and discussion 91 Chapter 6. Natural Frequencies of Double-Walled Carbon Nanotubes Based on Donnell Shell Theory 97 6.1. Background 97 6.2. Donnell shell theory for the vibration of MWCNTs 99 6.3. Donnell shell theory for the vibration of a simply supported DWCNT 100 6.4. DWCNT modeled on the basis of simplified Donnell shell theory 103 6.5. Further simplifications of the Donnell shell theory 105 6.6. Summary 107 Chapter 7. Buckling of a Double-Walled Carbon Nanotube 109 7.1. Background 109 7.2. Analysis 111 7.3. Simply supported DWCNT: exact solution 112 7.4. Simply supported DWCNT: Bubnov-Galerkin method 114 7.5. Simply supported DWCNTs: Petrov-Galerkin method 116 7.6. Clamped-clamped DWCNT 117 7.7. Simply supported-clamped DWCNT 119 7.8. Buckling of a clamped-free DWCNT by finite difference method 121 7.9. Buckling of a clamped-free DWCNT by Bubnov-Galerkin method 131 7.10. Summary 137 Chapter 8. Ballistic Impact on a Single-Walled Carbon Nanotube 139 8.1. Background 139 8.2. Analysis 140 8.3. Numerical results and discussion 144 Chapter 9. Clamped-Free Double-Walled Carbon Nanotube-Based Mass Sensor 149 9.1. Introduction 149 9.2. Basic equations 150 9.3. Vibration frequencies of DWCNT with light bacterium at the end of outer nanotube 152 9.4. Vibration frequencies of DWCNT with heavy bacterium at the end of outer nanotube 159 9.5. Vibration frequencies of DWCNT with light bacterium at the end of inner nanotube 165 9.6. Vibration frequencies of DWCNT with heavy bacterium at the end of inner nanotube 170 9.7. Numerical results 176 9.8. Effective stiffness and effective mass of the double-walled carbon nanotube sensor 178 9.9. Virus sensor based on single-walled carbon nanotube treated as Bresse-Timoshenko beam 190 9.10. Conclusion 201 Chapter 10. Some Fundamental Aspects
of Non-local Beam Mechanics for Nanostructures Applications 203 10.1. Background on the need of non-locality 204 10.2. Non-local beam models 209 10.3. The cantilever case: a structural paradigm 218 10.4. Euler-Bernoulli beam: Eringen's based model 231 10.5. Euler-Bernoulli beam: gradient elasticity model 234 10.6. Euler-Bernoulli beam: hybrid non-local elasticity model 236 10.7. Timoshenko beam: Eringen's based model 238 10.8. Timoshenko beam: gradient elasticity model 244 10.9. Timoshenko beam, hybrid non-local elasticity model 251 10.10. Higher order shear beam: Eringen's based model 254 10.11. Higher order shear beam, gradient elasticity model 259 10.12. Validity of the results for double-nanobeam systems 262 Chapter 11. Surface Effects on the Natural Frequencies of Double-Walled Carbon Nanotubes 269 11.1. Background 269 11.2. Analysis 271 11.3. Results and discussion 279 11.4. Surface effects on buckling of nanotubes 286 11.5. Summary 289 Chapter 12. Summary and Directions for Future Research 291 Appendix A. Elements of the Matrix A 297 Appendix B. Elements of the Matrix B 299 Appendix C. Coefficients of the Polynomial Equation [7.116] 301 Appendix D. Coefficients of the Polynomial Equation [9.25] 303 Appendix E. Coefficients of the Polynomial Equation [9.35] 305 Appendix F. Coefficients of the Polynomial Equation [9.40] 307 Appendix G. Coefficients of the Polynomial Equation [9.54] 311 Appendix H. Coefficients of the Polynomial Equation [9.63] 313 Appendix I. Coefficients of the Polynomial Equation [9.67] 315 Appendix J. An Equation Both More Consistent and Simpler than the Bresse-Timoshenko Equation 319 Bibliography 325 Author Index 399 Subject Index 415.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View