Cover image for Air Pollution Prevention and Control : Bioreactors and Bioenergy.
Air Pollution Prevention and Control : Bioreactors and Bioenergy.
Title:
Air Pollution Prevention and Control : Bioreactors and Bioenergy.
Author:
Kennes, Christian.
ISBN:
9781118523346
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (571 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Fundamentals and Microbiological Aspects -- Chapter 1 Introduction to Air Pollution -- 1.1 Introduction -- 1.2 Types and sources of air pollutants -- 1.2.1 Particulate matter -- 1.2.2 Carbon monoxide and carbon dioxide -- 1.2.3 Sulphur oxides -- 1.2.4 Nitrogen oxides -- 1.2.5 Volatile organic compounds (VOCs) -- 1.2.6 Odours -- 1.2.7 Ozone -- 1.2.8 Calculating concentrations of gaseous pollutants -- 1.3 Air pollution control technologies -- 1.3.1 Particulate matter -- 1.3.2 Volatile organic and inorganic compounds -- 1.3.2.1 Nonbiological processes -- 1.3.2.2 Bioprocesses -- 1.3.3 Environmentally friendly bioenergy -- 1.4 Conclusions -- References -- Chapter 2 Biodegradation and Bioconversion of Volatile Pollutants -- 2.1 Introduction -- 2.2 Biodegradation of volatile compounds -- 2.2.1 Inorganic compounds -- 2.2.1.1 Hydrogen sulphide (H2S) -- 2.2.1.2 Ammonia -- 2.2.2 Organic compounds -- 2.2.2.1 CxHy pollutants -- 2.2.2.2 CxHyOz pollutants -- 2.2.2.3 Organic sulphur compounds -- 2.2.2.4 Halogenated organic compounds -- 2.3 Mass balance calculations -- 2.4 Bioconversion of volatile compounds -- 2.4.1 Carbon monoxide and carbon dioxide -- 2.4.2 Volatile organic compounds (VOCs) -- 2.5 Conclusions -- References -- Chapter 3 Identification and Characterization of Microbial Communities in Bioreactors -- 3.1 Introduction -- 3.2 Molecular techniques to characterize the microbial communities in bioreactors -- 3.2.1 Quantification of the community members -- 3.2.1.1 Microscopic direct counts -- 3.2.1.2 Quantitative PCR -- 3.2.2 Assessment of microbial community diversity and structure -- 3.2.2.1 Biochemical methods -- 3.2.2.2 Genetic fingerprinting methods.

3.2.2.3 Analysis of fingerprint data by multivariate statistical tools and diversity indices -- 3.2.3 Determination of the microbial community composition -- 3.2.3.1 Construction of small sub-unit (SSU) rRNA clone libraries followed by phylogenetic identification by randomly sequencing the clones -- 3.2.3.2 Fluorescent in situ hybridization (FISH) -- 3.2.4 Techniques linking microbial identity to ecological function -- 3.2.4.1 Stable isotope probing (SIP) -- 3.2.4.2 Microautoradiography combined with FISH (FISH-MAR) -- 3.2.5 Microarray techniques -- 3.2.6 Synthesis -- 3.3 The link of microbial community structure with ecological function in engineered ecosystems -- 3.3.1 Introduction -- 3.3.2 Temporal and spatial dynamics of the microbial community structure under stationary conditions in bioreactors -- 3.3.2.1 Temporal stability and dynamics of the total bacterial community structure in the steady state -- 3.3.2.2 Microbial and functional stratification along the biofilter height -- 3.3.2.3 The microbial community structure-ecosystem function relationship -- 3.3.3 Impact of environmental disturbances on the microbial community structure within bioreactors -- 3.4 Conclusions -- References -- Part II Bioreactors for Air Pollution Control -- Chapter 4 Biofilters -- 4.1 Introduction -- 4.2 Historical perspective of biofilters -- 4.3 Process fundamentals -- 4.4 Operation parameters of biofilters -- 4.4.1 Empty-bed residence time (EBRT) -- 4.4.2 Volumetric loading rate (VLR) -- 4.4.3 Mass loading rate (MLR) -- 4.4.4 Elimination capacity (EC) -- 4.4.5 Removal efficiency (RE) -- 4.4.6 CO2 production rate (PCO2 ) -- 4.5 Design considerations -- 4.5.1 Reactor sizing -- 4.5.2 Irrigation system -- 4.5.3 Leachate collection and disposal -- 4.6 Start-up of biofilters.

4.7 Parameters affecting biofilter performance -- 4.7.1 Inlet concentrations and pollutant load -- 4.7.2 Composition of waste gas and interaction patterns -- 4.7.3 Biomass support medium -- 4.7.4 Temperature -- 4.7.5 pH -- 4.7.6 Oxygen availability -- 4.7.7 Nutrient availability -- 4.7.8 Moisture content and relative humidity -- 4.7.9 Polluted gas flow direction -- 4.7.10 Carbon dioxide generation rates -- 4.7.11 Pressure drop -- 4.8 Role of microorganisms and fungal growth in biofilters -- 4.9 Dynamic loading pattern and starvation conditions in biofilters -- 4.10 On-line monitoring and control (intelligent) systems for biofilters -- 4.10.1 On-line flame ionization detector (FID) and photo-ionization detector (PID) analysers -- 4.10.2 On-line proton transfer reaction-mass spectrometry (PTR-MS) -- 4.10.3 Intelligent moisture control systems -- 4.10.4 Differential neural network (DNN) sensor -- 4.11 Mathematical expressions for biofilters -- 4.12 Artificial neural network-based models -- 4.12.1 Back error propagation (BEP) algorithm -- 4.12.2 Important considerations during neural network modelling -- 4.12.2.1 Data selection, division and normalization -- 4.12.2.2 Network parameters -- 4.12.2.3 Sensitivity analysis of input parameters -- 4.12.2.4 Estimating errors in prediction -- 4.12.3 Neural network model development for biofilters and specific examples -- 4.13 Fuzzy logic-based models -- 4.14 Adaptive neuro-fuzzy interference system-based models for biofilters -- 4.15 Conclusions -- References -- Chapter 5 Biotrickling Filters -- 5.1 Introduction -- 5.2 Main characteristics of BTFs -- 5.2.1 General aspects -- 5.2.2 Packing material -- 5.2.3 Biomass and biofilm -- 5.2.4 Trickling phase -- 5.2.5 Gas EBRT -- 5.2.6 Liquid and gas velocities -- 5.3 Pressure drop and clogging -- 5.3.1 Excess biomass accumulation.

5.3.1.1 Limitation of biomass growth -- 5.3.1.2 Physical and chemical methods -- 5.3.1.3 Biological methods-predation -- 5.3.1.4 Cleaning the packing material outside the reactor -- 5.3.2 Accumulation of solid chemicals -- 5.4 Full-scale applications and scaling up -- 5.5 Conclusions -- References -- Chapter 6 Bioscrubbers -- 6.1 Introduction -- 6.2 General approach of bioscrubbers -- 6.3 Operating conditions -- 6.3.1 Absorption column -- 6.3.2 Biodegradation step-activated sludge reactor -- 6.4 Removing families of pollutants -- 6.4.1 Volatile organic compound (VOC) removal -- 6.4.2 Odor control -- 6.4.3 Sulfur compounds degradation -- 6.4.3.1 Sulfur compounds present in air -- 6.4.3.2 Biogas desulfurization -- 6.4.4 Ammonia absorption and bio-oxidation -- 6.5 Treatment of by-products generated by bioscrubbers -- 6.6 Conclusions and trends -- References -- Chapter 7 Membrane Bioreactors -- 7.1 Introduction -- 7.2 Membrane basics -- 7.2.1 Types of membranes -- 7.2.1.1 Porous membranes -- 7.2.1.2 Dense membranes -- 7.2.1.3 Composite membranes -- 7.2.2 Membrane materials -- 7.2.3 Membrane characterization parameters -- 7.2.3.1 Membrane thickness -- 7.2.3.2 Membrane performance: selectivity and permeance -- 7.2.4 Mass transport through the membrane -- 7.2.4.1 Transport in porous membranes -- 7.2.4.2 Transport in homogeneous membranes -- 7.3 Reactor configurations -- 7.3.1 Flat-sheet membranes -- 7.3.1.1 Plate and frame modules -- 7.3.1.2 Spiral-wound modules -- 7.3.2 Tubular configuration membranes -- 7.3.2.1 Tubular modules -- 7.3.2.2 Capillary membrane modules -- 7.3.2.3 Hollow-fiber membrane modules -- 7.3.3 Membrane-based bioreactors -- 7.4 Microbiology -- 7.5 Performance of membrane bioreactors -- 7.5.1 Membrane-based bioreactors.

7.5.2 Bioreactor operation: Influence of the operating parameters -- 7.6 Membrane bioreactor modeling -- 7.7 Applications of membrane bioreactors in biological waste-gas treatment -- 7.7.1 Comparison with other technologies -- 7.8 New applications: CO2-NOx sequestration -- 7.8.1 NOx removal -- 7.8.2 CO2 sequestration -- 7.9 Future needs -- References -- Chapter 8 Two-Phase Partitioning Bioreactors -- 8.1 Introduction -- 8.2 Features of the sequestering phase-selection criteria -- 8.3 Liquid two-phase partitioning bioreactors (TPPBs) -- 8.3.1 Performance -- 8.3.2 Mass transfer -- 8.3.2.1 Mass transfer pathways and mechanisms -- 8.3.2.2 Substrate uptake mechanisms -- 8.3.2.3 Mass transfer of poorly soluble substrates and oxygen -- 8.3.2.4 Physical parameters affecting Kla -- 8.3.3 Modeling and design elements -- 8.3.4 Limitations and research opportunities -- 8.4 Solids as the partitioning phase -- 8.4.1 Rationale -- 8.4.2 Performance -- 8.4.3 Mass transfer -- 8.4.4 Modeling and design elements -- 8.4.5 Limitations and research opportunities -- References -- Chapter 9 Rotating Biological Contactors -- 9.1 Introduction -- 9.1.1 Limitations of conventional gas-phase bioreactors -- 9.2 The rotating biological contactor -- 9.2.1 Modified RBCs for waste-gas treatment -- 9.2.1.1 Generation of humidified VOC stream -- 9.2.1.2 Biofilm development and start-up -- 9.2.1.3 VOC removal studies -- 9.3 Studies on removal of dichloromethane in modified RBCs -- 9.3.1 Comparison of different bioreactors (biofilters, biotrickling filters, and modified RBCs) -- 9.3.2 Studies on removal of benzene and xylene in modified RBCs -- 9.3.3 Microbiological studies of biofilms -- 9.3.3.1 Phylogenic analysis -- References -- Chapter 10 Innovative Bioreactors and Two-Stage Systems -- 10.1 Introduction.

10.2 Innovative bioreactor configurations.
Abstract:
In recent years, air pollution has become a major worldwide concern. Air pollutants can affect metabolic activity, impede healthy development, and exhibit carcinogenic and toxic properties in humans. Over the past two decades, the use of microbes to remove pollutants from contaminated air streams has become a widely accepted and efficient alternative to the classical physical and chemical treatment technologies. Air Pollution Prevention and Control: Bioreactors and Bioenergy focusses on these biotechnological alternatives looking at both the optimization of bioreactors and the development of cleaner biofuels. Structured in five parts, the book covers: Fundamentals and microbiological aspects Biofilters, bioscrubbers and other end-of-pipe treatment technologies Specific applications of bioreactors Biofuels production from pollutants and renewable resources (including biogas, biohydrogen, biodiesel and bioethanol) and its environmental impacts Case studies of applications including biotrickling filtration of waste gases, industrial bioscrubbers applied in different industries and biogas upgrading Air Pollution Prevention and Control: Bioreactors and Bioenergy is the first reference work to give a broad overview of bioprocesses for the mitigation of air pollution. Primarily intended for researchers and students in environmental engineering, biotechnology and applied microbiology, the book will also be of interest to industrial and governmental researchers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: