Cover image for Theory of Structures : Fundamentals, Framed Structures, Plates and Shells.
Theory of Structures : Fundamentals, Framed Structures, Plates and Shells.
Title:
Theory of Structures : Fundamentals, Framed Structures, Plates and Shells.
Author:
Marti, Peter.
ISBN:
9783433602607
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (697 pages)
Contents:
Contents -- Preface -- I INTRODUCTION -- 1 THE PURPOSE AND SCOPE OF THEORY OF STRUCTURES -- 1 1 General -- 1.2 The basis of theory of structures -- 1.3 Methods of theory of structures -- 1.4 Statics and structural dynamics -- 1.5 Theory of structures and structural engineering -- 2 BRIEF HISTORICAL BACKGROUND -- II FUNDAMENTALS -- 3 DESIGN OF STRUCTURES -- 3.1 General -- 3.2 Conceptual design -- 3.3 Service criteria agreement and basis of design -- 3.4 Summary -- 3.5 Exercises -- 4 STRUCTURAL ANALYSIS AND DIMENSIONING -- 4.1 General -- 4.2 Actions -- 4.2.1 Actions and action effects -- 4.2.2 Models of actions and representative values -- 4.3 Structural models -- 4.4 Limit states -- 4.5 Design situations and load cases -- 4.6 Verifications -- 4.6.1 Verification concept -- 4.6.2 Design values -- 4.6.3 Verification of structural safety -- 4.6.4 Verification of serviceability -- 4.7 Commentary -- 4.8 Recommendations for the structural calculations -- 4.9 Recommendations for the technical report -- 4.10 Summary -- 4.11 Exercises -- 5 STATIC RELATIONSHIPS -- 5.1 Force systems and equilibrium -- 5.1.1 Terminology -- 5.1.2 Force systems -- 5.1.3 Equilibrium -- 5.1.4 Overall stability -- 5.1.5 Supports -- 5.1.6 Hinges -- 5.1.7 Stress resultants -- 5.2 Stresses -- 5.2.1 Terminology -- 5.2.2 Uniaxial stress state -- 5.2.3 Coplanar stress states -- 5.2.4 Three-dimensional stress states -- 5.3 Differential structural elements -- 5.3.1 Straight bars -- 5.3.2 Bars in single curvature -- 5.4 Summary -- 5.5 Exercises -- 6 KINEMATIC RELATIONSHIPS -- 6.1 Terminology -- 6.2 Coplanar deformation -- 6.3 Three-dimensional deformation state -- 6.4 Summary -- 6.5 Exercises -- 7 CONSTITUTIVE RELATIONSHIPS -- 7.1 Terminology -- 7.2 Linear elastic behaviour -- 7.3 Perfectly plastic behaviour -- 7.3.1 Uniaxial stress state -- 7.3.2 Three-dimensional stress states.

7.3.3 Yield conditions -- 7.4 Time-dependent behaviour -- 7.4.1 Shrinkage -- 7.4.2 Creep and relaxation -- 7.5 Thermal deformations -- 7.6 Fatigue -- 7.6.1 General -- 7.6.2 S-N curves -- 7.6.3 Damage accumulation under fatigue loads -- 7.7 Summary -- 7.8 Exercises -- 8 ENERGY METHODS -- 8.1 Introductory example -- 8.1.1 Statically determinate system -- 8.1.2 Statically indeterminate system -- 8.1.3 Work equation -- 8.1.4 Commentary -- 8.2 Variables and operators -- 8.2.1 Introduction -- 8.2.2 Plane framed structures -- 8.2.3 Spatial framed structures -- 8.2.4 Coplanar stress states -- 8.2.5 Coplanar strain state -- 8.2.6 Slabs -- 8.2.7 Three-dimensional continua -- 8.2.8 Commentary -- 8.3 The principle of virtual work -- 8.3.1 Virtual force and deformation variables -- 8.3.2 The principle of virtual deformations -- 8.3.3 The principle of virtual forces -- 8.3.4 Commentary -- 8.4 Elastic systems -- 8.4.1 Hyperelastic materials -- 8.4.2 Conservative systems -- 8.4.3 Linear elastic systems -- 8.5 Approximation methods -- 8.5.1 Introduction -- 8.5.2 The RITZ method -- 8.5.3 The GALERKIN method -- 8.6 Summary -- 8.7 Exercises -- III LINEAR ANALYSIS OF FRAMED STRUCTURES -- 9 STRUCTURAL ELEMENTS AND TOPOLOGY -- 9.1 General -- 9.2 Modelling of structures -- 9.3 Discretised structural models -- 9.3.1 Description of the static system -- 9.3.2 Joint equilibrium -- 9.3.3 Static determinacy -- 9.3.4 Kinematic derivation of the equilibrium matrix -- 9.4 Summary -- 9.5 Exercises -- 10 DETERMINING THE FORCES -- 10.1 General -- 10.2 Investigating selected free bodies -- 10.3 Joint equilibrium -- 10.4 The kinematic method -- 10.5 Summary -- 10.6 Exercises -- 11 STRESS RESULTANTS AND STATE DIAGRAMS -- 11.1 General -- 11.2 Hinged frameworks -- 11.2.1 Hinged girders -- 11.2.2 Hinged arches and frames -- 11.2.3 Stiffened beams with intermediate hinges -- 11.3 Trusses.

11.3.1 Prerequisites and structural topology -- 11.3.2 Methods of calculation -- 11.3.3 Joint equilibrium -- 11.3.4 CREMONA diagram -- 11.3.5 RITTER method of sections -- 11.3.6 The kinematic method -- 11.4 Summary -- 11.5 Exercises -- 12 INFLUENCE LINES -- 12.1 General -- 12.2 Determining influence lines by means of equilibrium conditions -- 12.3 Kinematic determination of influence lines -- 12.4 Summary -- 12.5 Exercises -- 13 ELEMENTARY DEFORMATIONS -- 13.1 General -- 13.2 Bending and normal force -- 13.2.1 Stresses and strains -- 13.2.2 Principal axes -- 13.2.3 Stress calculation -- 13.2.4 Composite cross-sections -- 13.2.5 Thermal deformations -- 13.2.6 Planar bending of curved bars -- 13.2.7 Practical advice -- 13.3 Shear forces -- 13.3.1 Approximation for prismatic bars subjected to pure bending -- 13.3.2 Approximate coplanar stress state -- 13.3.3 Thin-wall cross-sections -- 13.3.4 Shear centre -- 13.4 Torsion -- 13.4.1 Circular cross-sections -- 13.4.2 General cross-sections -- 13.4.3 Thin-wall hollow cross-sections -- 13.4.4 Warping torsion -- 13.5 Summary -- 13.6 Exercises -- 14 SINGLE DEFORMATIONS -- 14.1 General -- 14.2 The work theorem -- 14.2.1 Introductory example -- 14.2.2 General formulation -- 14.2.3 Calculating the passive work integrals -- 14.2.4 Systematic procedure -- 14.3 Applications -- 14.4 MAXWELL's theorem -- 14.5 Summary -- 14.6 Exercises -- 15 DEFORMATION DIAGRAMS -- 15.1 General -- 15.2 Differential equations for straight bar elements -- 15.2.1 In-plane loading -- 15.2.2 General loading -- 15.2.3 The effect of shear forces -- 15.2.4 Creep, shrinkage and thermal deformations -- 15.2.5 Curved bar axes -- 15.3 Integration methods -- 15.3.1 Analytical integration -- 15.3.2 MOHR's analogy -- 15.4 Summary -- 15.5 Exercises -- 16 THE FORCE METHOD -- 16.1 General.

16.2 Structural behaviour of statically indeterminate systems -- 16.2.1 Overview -- 16.2.2 Statically determinate system -- 16.2.3 System with one degree of static indeterminacy -- 16.2.4 System with two degrees of static indeterminacy -- 16.2.5 In-depth analysis of system with one degree of static indeterminacy -- 16.2.6 In-depth analysis of system with two degrees of static indeterminacy -- 16.3 Classic presentation of the force method -- 16.3.1 General procedure -- 16.3.2 Commentary -- 16.3.3 Deformations -- 16.3.4 Influence lines -- 16.4 Applications -- 16.5 Summary -- 16.6 Exercises -- 17 THE DISPLACEMENT METHOD -- 17.1 Independent bar end variables -- 17.1.1 General -- 17.1.2 Member stiffness relationship -- 17.1.3 Actions on bars -- 17.1.4 Algorithm for the displacement method -- 17.2 Complete bar end variables -- 17.2.1 General -- 17.2.2 Member stiffness relationship -- 17.2.3 Actions on bars -- 17.2.4 Support force variables -- 17.3 The direct stiffness method -- 17.3.1 Incidence transformation -- 17.3.2 Rotational transformation -- 17.3.3 Algorithm for the direct stiffness method -- 17.4 The slope-deflection method -- 17.4.1 General -- 17.4.2 Basic states and member end moments -- 17.4.3 Equilibrium conditions -- 17.4.4 Applications -- 17.4.5 Restraints -- 17.4.6 Influence lines -- 17.4.7 CROSS method of moment distribution -- 17.5 Summary -- 17.6 Exercises -- 18 CONTINUOUS MODELS -- 18.1 General -- 18.2 Bar extension -- 18.2.1 Practical examples -- 18.2.2 Analytical model -- 18.2.3 Residual stresses -- 18.2.4 Restraints -- 18.2.5 Bond -- 18.2.6 Summary -- 18.3 Beams in shear -- 18.3.1 Practical examples -- 18.3.2 Analytical model -- 18.3.3 Multi-storey frame -- 18.3.4 VIERENDEEL girder -- 18.3.5 Sandwich panels -- 18.3.6 Summary -- 18.4 Beams in bending -- 18.4.1 General -- 18.4.2 Analytical model -- 18.4.3 Restraints.

18.4.4 Elastic foundation -- 18.4.5 Summary -- 18.5 Combined shear and bending response -- 18.5.1 General -- 18.5.2 Shear wall frame systems -- 18.5.3 Shear wall connection -- 18.5.4 Dowelled beams -- 18.5.5 Summary -- 18.6 Arches -- 18.6.1 General -- 18.6.2 Analytical model -- 18.6.3 Applications -- 18.6.4 Summary -- 18.7 Annular structures -- 18.7.1 General -- 18.7.2 Analytical model -- 18.7.3 Applications -- 18.7.4 Edge disturbances in cylindrical shells -- 18.7.5 Summary -- 18.8 Cables -- 18.8.1 General -- 18.8.2 Analytical model -- 18.8.3 Inextensible cables -- 18.8.4 Extensible cables -- 18.8.5 Axial stiffness of laterally loaded cables -- 18.8.6 Summary -- 18.9 Combined cable-type and bending response -- 18.9.1 Analytical model -- 18.9.2 Bending-resistant ties -- 18.9.3 Suspended roofs and stress ribbons -- 18.9.4 Suspension bridges -- 18.9.5 Summary -- 18.10 Exercises -- 19 DISCRETISED MODELS -- 19.1 General -- 19.2 The force method -- 19.2.1 Complete and global bar end forces -- 19.2.2 Member flexibility relation -- 19.2.3 Actions on bars -- 19.2.4 Algorithm for the force method -- 19.2.5 Comparison with the classic force method -- 19.2.6 Practical application -- 19.2.7 Reduced degrees of freedom -- 19.2.8 Supplementary remarks -- 19.3 Introduction to the finite element method -- 19.3.1 Basic concepts -- 19.3.2 Element matrices -- 19.3.3 Bar element rigid in shear -- 19.3.4 Shape functions -- 19.3.5 Commentary -- 19.4 Summary -- 19.5 Exercises -- IV NON-LINEAR ANALYSIS OF FRAMED STRUCTURES -- 20 ELASTIC-PLASTIC SYSTEMS -- 20.1 General -- 20.2 Truss with one degree of static indeterminacy -- 20.2.1 Single-parameter loading -- 20.2.2 Dual-parameter loading and generalisation -- 20.3 Beams in bending -- 20.3.1 Moment-curvature diagrams -- 20.3.2 Simply supported beams -- 20.3.3 Continuous beams -- 20.3.4 Frames -- 20.3.5 Commentary.

20.4 Summary.
Abstract:
This book provides the reader with a consistent approach to theory of structures on the basis of applied mechanics. It covers framed structures as well as plates and shells using elastic and plastic theory, and emphasizes the historical background and the relationship to practical engineering activities. This is the first comprehensive treatment of the school of structures that has evolved at the Swiss Federal Institute of Technology in Zurich over the last 50 years. The many worked examples and exercises make this a textbook ideal for in-depth studies. Each chapter concludes with a summary that highlights the most important aspects in concise form. Specialist terms are defined in the appendix. There is an extensive index befitting such a work of reference. The structure of the content and highlighting in the text make the book easy to use. The notation, properties of materials and geometrical properties of sections plus brief outlines of matrix algebra, tensor calculus and calculus of variations can be found in the appendices. This publication should be regarded as a key work of reference for students, teaching staff and practising engineers. Its purpose is to show readers how to model and handle structures appropriately, to support them in designing and checking the structures within their sphere of responsibility.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: