Cover image for Statistical Physics : An Entropic Approach.
Statistical Physics : An Entropic Approach.
Title:
Statistical Physics : An Entropic Approach.
Author:
Ford, Ian.
ISBN:
9781118597514
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (282 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Disorder or Uncertainty? -- Chapter 2 Classical Thermodynamics -- 2.1 The Classical Laws of Thermodynamics -- 2.2 Macroscopic State Variables and Thermodynamic Processes -- 2.3 Properties of the Ideal Classical Gas -- 2.4 Thermodynamic Processing of the Ideal Gas -- 2.5 Entropy of the Ideal Gas -- 2.6 Entropy Change in Free Expansion of an Ideal Gas -- 2.7 Entropy Change due to Nonquasistatic Heat Transfer -- 2.8 Cyclic Thermodynamic Processes, the Clausius Inequality and Carnot's Theorem -- 2.9 Generality of the Clausius Expression for Entropy Change -- 2.10 Entropy Change due to Nonquasistatic Work -- 2.11 Fundamental Relation of Thermodynamics -- 2.12 Entropy Change due to Nonquasistatic Particle Transfer -- 2.13 Entropy Change due to Nonquasistatic Volume Exchange -- 2.14 General Thermodynamic Driving -- 2.15 Reversible and Irreversible Processes -- 2.16 Statements of the Second Law -- 2.17 Classical Thermodynamics: the Salient Points -- Exercises -- Chapter 3 Applications of Classical Thermodynamics -- 3.1 Fluid Flow and Throttling Processes -- 3.2 Thermodynamic Potentials and Availability -- 3.2.1 Helmholtz Free Energy -- 3.2.2 Why Free Energy? -- 3.2.3 Contrast between Equilibria -- 3.2.4 Gibbs Free Energy -- 3.2.5 Grand Potential -- 3.3 Maxwell Relations -- 3.4 Nonideal Classical Gas -- 3.5 Relationship between Heat Capacities -- 3.6 General Expression for an Adiabat -- 3.7 Determination of Entropy from a Heat Capacity -- 3.8 Determination of Entropy from an Equation of State -- 3.9 Phase Transitions and Phase Diagrams -- 3.9.1 Conditions for Coexistence -- 3.9.2 Clausius-Clapeyron Equation -- 3.9.3 The Maxwell Equal Areas Construction -- 3.9.4 Metastability and Nucleation -- 3.10 Work Processes without Volume Change.

3.11 Consequences of the Third Law -- 3.12 Limitations of Classical Thermodynamics -- Exercises -- Chapter 4 Core Ideas of Statistical Thermodynamics -- 4.1 The Nature of Probability -- 4.2 Dynamics of Complex Systems -- 4.2.1 The Principle of Equal a Priori Probabilities -- 4.2.2 Microstate Enumeration -- 4.3 Microstates and Macrostates -- 4.4 Boltzmann's Principle and the Second Law -- 4.5 Statistical Ensembles -- 4.6 Statistical Thermodynamics: the Salient Points -- Exercises -- Chapter 5 Statistical Thermodynamics of a System of Harmonic Oscillators -- 5.1 Microstate Enumeration -- 5.2 Microcanonical Ensemble -- 5.3 Canonical Ensemble -- 5.4 The Thermodynamic Limit -- 5.5 Temperature and the Zeroth Law of Thermodynamics -- 5.6 Generalisation -- Exercises -- Chapter 6 The Boltzmann Factor and the Canonical Partition Function -- 6.1 Simple Applications of the Boltzmann Factor -- 6.1.1 Maxwell-Boltzmann Distribution -- 6.1.2 Single Classical Oscillator and the Equipartition Theorem -- 6.1.3 Isothermal Atmosphere Model -- 6.1.4 Escape Problems and Reaction Rates -- 6.2 Mathematical Properties of the Canonical Partition Function -- 6.3 Two-Level Paramagnet -- 6.4 Single Quantum Oscillator -- 6.5 Heat Capacity of a Diatomic Molecular Gas -- 6.6 Einstein Model of the Heat Capacity of Solids -- 6.7 Vacancies in Crystals -- Exercises -- Chapter 7 The Grand Canonical Ensemble and Grand Partition Function -- 7.1 System of Harmonic Oscillators -- 7.2 Grand Canonical Ensemble for a General System -- 7.3 Vacancies in Crystals Revisited -- Exercises -- Chapter 8 Statistical Models of Entropy -- 8.1 Boltzmann Entropy -- 8.1.1 The Second Law of Thermodynamics -- 8.1.2 The Maximum Entropy Macrostate of Oscillator Spikiness -- 8.1.3 The Maximum Entropy Macrostate of Oscillator Populations.

8.1.4 The Third Law of Thermodynamics -- 8.2 Gibbs Entropy -- 8.2.1 Fundamental Relation of Thermodynamics and Thermodynamic Work -- 8.2.2 Relationship to Boltzmann Entropy -- 8.2.3 Third Law Revisited -- 8.3 Shannon Entropy -- 8.4 Fine and Coarse Grained Entropy -- 8.5 Entropy at the Nanoscale -- 8.6 Disorder and Uncertainty -- Exercises -- Chapter 9 Statistical Thermodynamics of the Classical Ideal Gas -- 9.1 Quantum Mechanics of a Particle in a Box -- 9.2 Densities of States -- 9.3 Partition Function of a One-Particle Gas -- 9.4 Distinguishable and Indistinguishable Particles -- 9.5 Partition Function of an N-Particle Gas -- 9.6 Thermal Properties and Consistency with Classical Thermodynamics -- 9.7 Condition for Classical Behaviour -- Exercises -- Chapter 10 Quantum Gases -- 10.1 Spin and Wavefunction Symmetry -- 10.2 Pauli Exclusion Principle -- 10.3 Phenomenology of Quantum Gases -- Exercises -- Chapter 11 Boson Gas -- 11.1 Grand Partition Function for Bosons in a Single Particle State -- 11.2 Bose-Einstein Statistics -- 11.3 Thermal Properties of a Boson Gas -- 11.4 Bose-Einstein Condensation -- 11.5 Cooper Pairs and Superconductivity -- Exercises -- Chapter 12 Fermion Gas -- 12.1 Grand Partition Function for Fermions in a Single Particle State -- 12.2 Fermi-Dirac Statistics -- 12.3 Thermal Properties of a Fermion Gas -- 12.4 Maxwell-Boltzmann Statistics -- 12.5 The Degenerate Fermion Gas -- 12.6 Electron Gas in Metals -- 12.7 White Dwarfs and the Chandrasekhar Limit -- 12.8 Neutron Stars -- 12.9 Entropy of a Black Hole -- Exercises -- Chapter 13 Photon Gas -- 13.1 Electromagnetic Waves in a Box -- 13.2 Partition Function of the Electromagnetic Field -- 13.3 Thermal Properties of a Photon Gas -- 13.3.1 Planck Energy Spectrum of Black-Body Radiation -- 13.3.2 Photon Energy Density and Flux -- 13.3.3 Photon Pressure.

13.3.4 Photon Entropy -- 13.4 The Global Radiation Budget and Climate Change -- 13.5 Cosmic Background Radiation -- Exercises -- Chapter 14 Statistical Thermodynamics of Interacting Particles -- 14.1 Classical Phase Space -- 14.2 Virial Expansion -- 14.3 Harmonic Structures -- 14.3.1 Triatomic Molecule -- 14.3.2 Einstein Solid -- 14.3.3 Debye Solid -- Exercises -- Chapter 15 Thermodynamics away from Equilibrium -- 15.1 Nonequilibrium Classical Thermodynamics -- 15.1.1 Energy and Particle Currents and their Conjugate Thermodynamic Driving Forces -- 15.1.2 Entropy Production in Constrained and Evolving Systems -- 15.2 Nonequilibrium Statistical Thermodynamics -- 15.2.1 Probability Flow and the Principle of Equal a Priori Probabilities -- 15.2.2 The Dynamical Basis of the Principle of Entropy Maximisation -- Exercises -- Chapter 16 The Dynamics of Probability -- 16.1 The Discrete Random Walk -- 16.2 Master Equations -- 16.2.1 Solution to the Random Walk -- 16.2.2 Entropy Production during a Random Walk -- 16.3 The Continuous Random Walk and the Fokker-Planck Equation -- 16.3.1 Wiener Process -- 16.3.2 Entropy Production in the Wiener Process -- 16.4 Brownian Motion -- 16.5 Transition Probability Density for a Harmonic Oscillator -- Exercises -- Chapter 17 Fluctuation Relations -- 17.1 Forward and Backward Path Probabilities: a Criterion for Equilibrium -- 17.2 Time Asymmetry of Behaviour and a Definition of Entropy Production -- 17.3 The Relaxing Harmonic Oscillator -- 17.4 Entropy Production Arising from a Single Random Walk -- 17.5 Further Fluctuation Relations -- 17.6 The Fundamental Basis of the Second Law -- Exercises -- Chapter 18 Final Remarks -- Further Reading -- Index.
Abstract:
This undergraduate textbook provides a statistical mechanical foundation to the classical laws of thermodynamics via a comprehensive treatment of the basics of classical thermodynamics, equilibrium statistical mechanics, irreversible thermodynamics, and the statistical mechanics of non-equilibrium phenomena. This timely book has a unique focus on the concept of entropy, which is studied starting from the well-known ideal gas law, employing various thermodynamic processes, example systems and interpretations to expose its role in the second law of thermodynamics. This modern treatment of statistical physics includes studies of neutron stars, superconductivity and the recently developed fluctuation theorems. It also presents figures and problems in a clear and concise way, aiding the student's understanding.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: