Cover image for Computational Approaches to Energy Materials.
Computational Approaches to Energy Materials.
Title:
Computational Approaches to Energy Materials.
Author:
Catlow, Richard.
ISBN:
9781118551448
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (324 pages)
Contents:
Computational Approaches to Energy Materials -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- 1 Computational Techniques -- 1.1 Introduction -- 1.2 Atomistic Simulations -- 1.2.1 Basic Concepts -- 1.2.2 Parameterization -- 1.2.3 Parameter Sets -- 1.2.4 Implementation -- 1.3 Electronic Structure Techniques -- 1.3.1 Wavefunction Methods -- 1.3.1.1 Hartree-Fock Theory -- 1.3.1.2 Post-Hartree-Fock Approaches -- 1.3.1.3 Semi-empirical Wavefunction Methods -- 1.3.2 Density Functional Theory -- 1.3.2.1 Exchange-Correlation Functionals -- 1.3.2.2 Semi-empirical Density Functional Approaches -- 1.3.3 Excited States -- 1.4 Multiscale Approaches -- 1.4.1 Hybrid QM/MM Embedding Techniques -- 1.4.2 Beyond Atomistic Models -- 1.5 Boundary Conditions -- 1.6 Point-Defect Simulations -- 1.6.1 Mott-Littleton Approach -- 1.6.2 Periodic Supercell Approach -- 1.7 Summary -- References -- 2 Energy Generation: Solar Energy -- 2.1 Thin-Film Photovoltaics -- 2.2 First-Principles Methods for Electronic Excitations -- 2.2.1 Hedin's Equations and the GW Approximation -- 2.2.2 Hybrid Functionals -- 2.2.3 Bethe-Salpeter Equation -- 2.2.4 Model Kernels for TDDFT -- 2.3 Examples of Applications -- 2.3.1 Cu-Based Thin-Film Absorbers -- 2.3.2 Delafossite Transparent Conductive Oxides -- 2.4 Conclusions -- References -- 3 Energy Generation: Nuclear Energy -- 3.1 Introduction -- 3.2 Radiation Effects in Nuclear Materials -- 3.2.1 Fission -- 3.2.1.1 Structural Materials -- 3.2.1.2 Fuel -- 3.2.1.3 Cladding -- 3.2.2 Fusion -- 3.2.2.1 Structural Materials -- 3.2.2.2 Plasma-Facing Materials -- 3.2.3 Waste Disposal -- 3.3 Modeling Radiation Effects -- 3.3.1 BCA Modeling -- 3.3.2 Molecular Dynamics -- 3.3.2.1 Cascade Simulations -- 3.3.2.2 Sputtering Simulations -- 3.3.3 Monte Carlo Simulations -- 3.3.3.1 Kinetic Monte Carlo.

3.3.3.2 Object Kinetic Monte Carlo -- 3.3.3.3 Transition Rates -- 3.3.3.4 Examples -- 3.3.4 Cluster Dynamics -- 3.3.4.1 Examples -- 3.3.4.2 Comparison with OKMC -- 3.3.5 Density Functional Theory -- 3.3.5.1 Interatomic Potentials -- 3.3.5.2 Transition Rates -- 3.4 Summary and Outlook -- References -- 4 Energy Storage: Rechargeable Lithium Batteries -- 4.1 Introduction -- 4.2 Overview of Computational Approaches -- 4.3 Li-Ion Batteries -- 4.4 Cell Voltages and Structural Phase Stability -- 4.5 Li-Ion Diffusion and Defect Properties -- 4.6 Surfaces and Morphology -- 4.7 Current Trends and Future Directions -- 4.8 Concluding Remarks -- References -- 5 Energy Storage: Hydrogen -- 5.1 Introduction -- 5.2 Computational Approach in Hydrogen Storage Research -- 5.3 Chemisorption Approach -- 5.4 Physisorption Approach -- 5.5 Spillover Approach -- 5.6 Kubas-Type Approach -- 5.7 Conclusion -- References -- 6 Energy Conversion: Solid Oxide Fuel Cells -- 6.1 Introduction -- 6.2 Computational Details -- 6.3 Cathode Materials and Reactions -- 6.3.1 Surfaces: LaMnO3 and (La,Sr)MnO3 Perovskites -- 6.3.1.1 Surface Termination, Surface Point Defects -- 6.3.1.2 Oxygen Adsorption and Diffusion -- 6.3.1.3 Rate-Determining Step of the Surface Reaction -- 6.3.2 Bulk Properties of Multicomponent Perovskites -- 6.3.2.1 Oxygen Vacancy Formation in (Ba,Sr)(Co,Fe)O3-d -- 6.3.2.2 Oxygen Vacancy Migration in (Ba,Sr)(Co,Fe)O3-d -- 6.3.2.3 Disorder and Cation Rearrangement in (Ba,Sr)(Co,Fe)O3-d -- 6.3.3 Defects in (La,Sr)(Co,Fe)O3-d -- 6.4 Ion Transport in Electrolytes: Recent Studies -- 6.5 Reactions at SOFC Anodes -- 6.6 Conclusions -- Acknowledgments -- References -- 7 Energy Conversion: Heterogeneous Catalysis -- 7.1 Introduction -- 7.1.1 Particle Size Dependence of Catalytic Reactivity -- 7.1.2 Activity and Selectivity as a Function of the Metal Type.

7.1.3 Reactivity as a Function of State of the Surface -- 7.1.4 Mechanism of Acid Catalysis: Single Site versus Dual Site -- 7.2 Basic Concepts of Heterogeneous Catalysis -- 7.3 Surface Sensitivity in CH Activation -- 7.3.1 Homolytic Activation of CH Bonds -- 7.3.2 Heterolytic Activation of CH Bonds -- 7.3.2.1 Brønsted Acid Catalysis -- 7.3.2.2 Lewis Acid Catalysis -- 7.4 Surface Sensitivity for the C-C Bond Formation -- 7.4.1 Transition Metal Catalyzed FT Reaction -- 7.4.2 C-C Bond Formation Catalyzed by Zeolitic Brønsted Acids -- 7.5 Structure and Surface Composition Sensitivity: Oxygen Insertion versus CH Bond Cleavage -- 7.5.1 Silver-Catalyzed Ethylene Epoxidation -- 7.5.2 Benzene Oxidation by Iron-Modified Zeolite -- 7.6 Conclusion -- References -- 8 Energy Conversion: Solid-State Lighting -- 8.1 Introduction to Solid-State Lighting -- 8.2 Structure and Electronic Properties of Nitride Materials -- 8.2.1 Density Functional Theory and Ground-State Properties -- 8.2.2 Electronic Excitations: GW and Exact Exchange -- 8.2.3 Electronic Excitations: Hybrid Functionals -- 8.2.4 Band-gap Bowing and Band Alignments -- 8.2.5 Strain and Deformation Potentials -- 8.3 Defects in Nitride Materials -- 8.3.1 Methodology -- 8.3.2 Example: C in GaN -- 8.4 Auger Recombination and Efficiency Droop Problem of Nitride LEDs -- 8.4.1 Efficiency Droop -- 8.4.2 Auger Recombination -- 8.4.3 Computational Methodology -- 8.4.4 Results -- 8.5 Summary -- Acknowledgments -- References -- 9 Toward the Nanoscale -- 9.1 Introduction -- 9.2 Review of Simulation Methods -- 9.2.1 Established Computational Methods -- 9.2.2 Evolutionary Methods -- 9.2.2.1 GM Methods -- 9.2.2.2 Amorphization and Recrystallization -- 9.3 Applications -- 9.3.1 Nanoclusters -- 9.3.1.1 ZnO -- 9.3.1.2 ZnS -- 9.3.1.3 MnO2 -- 9.3.1.4 TiO2 -- 9.3.2 Nanoarchitectures.

9.3.2.1 MnO2 Nanoparticle (Nucleation and Crystallization) -- 9.3.2.2 MnO2 Bulk -- 9.3.2.3 MnO2 Nanoporous -- 9.3.2.4 TiO2 Nanoporous -- 9.3.2.5 ZnS and ZnO Nanoporous -- 9.4 Summary and Conclusion -- Acknowledgments -- References -- Further Reading -- Index.
Abstract:
The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process.   Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the development and optimization of energy materials, outlining their strengths, limitations, and future applications.  The review of techniques includes current methodologies based on electronic structure, interatomic potential and hybrid methods. The methodological components are integrated into a comprehensive survey of applications, addressing the major themes in energy research. Topics covered include:  Introduction to computational methods and approaches  Modelling materials for energy generation applications: solar energy and nuclear energy  Modelling materials for storage applications: batteries and hydrogen  Modelling materials for energy conversion applications: fuel cells, heterogeneous catalysis and solid-state lighting  Nanostructures for energy applications This full colour text is an accessible introduction for newcomers to the field, and a valuable reference source for experienced researchers working on computational techniques and their application to energy materials.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: