Cover image for Physics for Radiation Protection.
Physics for Radiation Protection.
Title:
Physics for Radiation Protection.
Author:
Martin, James E.
ISBN:
9783527667086
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (613 pages)
Contents:
Title Page -- Contents -- Preface -- 1 Structure of Atoms -- 1.1 Atom Constituents -- 1.2 Structure, Identity, and Stability of Atoms -- 1.3 Chart of the Nuclides -- 1.4 Nuclear Models -- Problems - Chapter 1 -- 2 Atoms and Energy -- 2.1 Atom Measures -- 2.2 Energy Concepts for Atoms -- 2.2.1 Mass-energy -- 2.2.2 Binding Energy of Nuclei -- 2.3 Summary -- Other Suggested Sources -- Problems - Chapter 2 -- 3 Radioactive Transformation -- 3.1 Processes of Radioactive Transformation -- 3.1.1 Transformation of Neutron-rich Radioactive Nuclei -- 3.1.2 Double Beta (ββ) Transformation -- 3.1.3 Transformation of Proton-rich Nuclei -- 3.1.4 Positron Emission -- 3.1.5 Average Energy of Negatron and Positron Emitters -- 3.1.6 Electron Capture (EC) -- 3.1.7 Radioactive Transformation of Heavy Nuclei by Alpha Particle Emission -- 3.1.8 Theory of Alpha Particle Transformation -- 3.1.9 Transuranic (TRU) Radionuclides -- 3.1.10 Gamma Emission -- 3.1.11 Internal Transition (Metastable or Isomeric States) -- 3.1.12 Internal Conversion -- 3.1.13 Multiple Modes of Radioactive Transformation -- 3.1.14 Transformation by Delayed Neutron Emission -- 3.1.15 Transformation by Spontaneous Fission -- 3.1.16 Proton Emission -- 3.2 Decay Schemes -- 3.3 Rate of Radioactive Transformation -- 3.3.1 Activity -- 3.3.2 Units of Radioactive Transformation -- 3.3.3 Mathematics of Radioactive Transformation -- 3.3.4 Half-Life -- 3.3.5 Mean Life -- 3.3.6 Effective Half-life -- 3.4 Radioactivity Calculations -- 3.4.1 Half-life Determination -- 3.5 Activity-mass Relationships -- 3.5.1 Specific Activity -- 3.6 Radioactive Series Transformation -- 3.6.1 Series Decay Calculations -- 3.6.2 Recursive Kinetics: the Bateman Equations -- 3.7 Radioactive Equilibrium -- 3.7.1 Secular Equilibrium -- 3.7.2 Transient Equilibrium -- 3.7.3 Radionuclide Generators.

3.8 Total Number of Transformations (Uses of τ and λff) -- 3.9 Discovery of the Neutrino -- Acknowledgments -- Other Suggested Sources -- Problems - Chapter 3 -- 4 Interactions -- 4.1 Production of X-rays -- 4.2 Characteristic X-rays -- 4.2.1 X-rays and Atomic Structure -- 4.2.2 Auger Electrons -- 4.3 Nuclear Interactions -- 4.3.1 Cross-Section -- 4.3.2 Q-values for Nuclear Reactions -- 4.4 Alpha Particle Interactions -- 4.4.1 Alpha-Neutron Reactions -- 4.5 Transmutation by Protons and Deuterons -- 4.5.1 Proton-Alpha Particle (p,α) Reactions -- 4.5.2 Proton-Neutron (p,n) Reactions -- 4.5.3 Proton-Gamma (p, γ) Reactions -- 4.5.4 Proton-Deuteron Reactions -- 4.5.5 Deuteron-Alpha (d, α) Reactions -- 4.5.6 Deuteron-Proton (d,p) and Deuteron-Neutron (d,n) Reactions -- 4.6 Neutron Interactions -- 4.6.1 Radiative Capture (n, γ) Reactions -- 4.6.2 Charged Particle Emission (CPE) -- 4.6.3 Neutron-Proton (n,p) Reactions -- 4.6.4 Neutron-Neutron (n,2n) Reactions -- 4.7 Activation Product Calculations -- 4.7.1 Neutron Activation Product Calculations -- 4.7.2 Charged Particles Calculations -- 4.8 Medical Isotope Reactions -- 4.9 Transuranium Elements -- 4.10 Photon Interactions -- 4.10.1 Activation by Photons -- 4.11 Fission and Fusion Reactions -- 4.11.1 Fission -- 4.11.2 Fusion -- 4.12 Summary -- Other Suggested Sources -- Problems - Chapter 4 -- 5 Nuclear Fission and its Products -- 5.1 Fission Energy -- 5.2 Physics of Sustained Nuclear Fission -- 5.3 Neutron Economy and Reactivity -- 5.4 Nuclear Power Reactors -- 5.4.1 Reactor Design: Basic Systems -- 5.5 Light Water Reactors (LWRs) -- 5.5.1 Pressurized Water Reactor (PWR) -- 5.5.2 Boiling Water Reactor (BWR) -- 5.5.3 Inherent Safety Features of LWRs -- 5.5.4 Decay Heat in Power Reactors -- 5.5.5 Uranium Enrichment -- 5.6 Heavy Water Reactors (HWRs) -- 5.6.1 HWR Safety Systems -- 5.7 Breeder Reactors.

5.7.1 Liquid Metal Fast Breeder Reactor (LMFBR) -- 5.8 Gas-cooled Reactors -- 5.8.1 High-temperature Gas Reactor (HTGR) -- 5.9 Reactor Radioactivity -- 5.9.1 Fuel Cladding -- 5.9.2 Radioactive Products of Fission -- 5.9.3 Production of Individual Fission Products -- 5.9.4 Fission Products in Spent Fuel -- 5.9.5 Fission Product Poisons -- 5.10 Radioactivity in Reactors -- 5.10.1 Activation Products in Nuclear Reactors -- 5.10.2 Tritium Production in Reactors -- 5.10.3 Low-level Radioactive Waste -- 5.11 Summary -- Acknowledgments -- Other Suggested Sources -- Problems - Chapter 5 -- 6 Naturally Occurring Radiation and Radioactivity -- 6.1 Discovery and Interpretation -- 6.2 Background Radiation -- 6.3 Cosmic Radiation -- 6.4 Cosmogenic Radionuclides -- 6.5 Naturally Radioacitve Series -- 6.5.1 Neptunium Series Radionuclides -- 6.6 Singly Occurring Primordial Radionuclides -- 6.7 Radioactive Ores and Byproducts -- 6.7.1 Resource Recovery -- 6.7.2 Uranium Ores -- 6.7.3 Water Treatment Sludge -- 6.7.4 Phosphate Industry Wastes -- 6.7.5 Elemental Phosphorus -- 6.7.6 Manhattan Project Wastes -- 6.7.7 Thorium Ores -- 6.8 Radioactivity Dating -- 6.8.1 Carbon Dating -- 6.8.2 Dating by Primordial Radionuclides -- 6.8.3 Potassium-Argon Dating -- 6.8.4 Ionium (230Th) Method -- 6.8.5 Lead-210 Dating -- 6.9 Radon and its Progeny -- 6.9.1 Radon Subseries -- 6.9.2 Working Level for Radon Progeny -- 6.9.3 Measurement of Radon -- 6.10 Summary -- Acknowledgements -- Other Suggested Sources -- Problems - Chapter 6 -- 7 Interactions of Radiation with Matter -- 7.1 Radiation Dose and Units -- 7.1.1 Radiation Absorbed Dose -- 7.1.2 Radiation Dose Equivalent -- 7.1.3 Radiation Exposure -- 7.2 Radiation Dose Calculations -- 7.2.1 Inverse Square Law -- 7.3 Interaction Processes -- 7.4 Interactions of Alpha Particles and Heavy Nuclei.

7.4.1 Recoil Nuclei and Fission Fragments -- 7.4.2 Range of Alpha Particles -- 7.5 Beta Particle Interactions and Dose -- 7.5.1 Energy Loss by Ionization -- 7.5.2 Energy Losses by Bremsstrahlung -- 7.5.3 Cerenkov Radiation -- 7.5.4 Attenuation of Beta Particles -- 7.5.5 Range Versus Energy of Beta Particles -- 7.5.6 Radiation Dose from Beta Particles -- 7.5.7 Beta Dose from Contaminated Surfaces -- 7.5.8 Beta Contamination on Skin or Clothing -- 7.5.9 Beta Dose from Hot Particles -- 7.6 Photon Interactions -- 7.6.1 Photoelectric Interactions -- 7.6.2 Compton Interactions -- 7.6.3 Pair Production -- 7.6.4 Photodisintegration -- 7.7 Photon Attenuation and Absorption -- 7.7.1 Attenuation (μ) and Energy Absorption (μEn) Coefficients -- 7.7.2 Effect of E and Z on Photon Attenuation/Absorption -- 7.7.3 Absorption Edges -- 7.8 Energy Transfer and Absorption by Photons -- 7.8.1 Electronic Equilibrium -- 7.8.2 Bragg-Gray Theory -- 7.9 Exposure/Dose Calculations -- 7.9.1 Point Sources -- 7.9.2 Gamma Ray Constant, Γ -- 7.9.3 Exposure and Absorbed Dose -- 7.9.4 Exposure, Kerma, and Absorbed Dose -- 7.10 Summary -- Acknowledgments -- Other Suggested Sources -- Problems - Chapter 7 -- 8 Radiation Shielding -- 8.1 Shielding of Alpha-Emitting Sources -- 8.2 Shielding of Beta-Emitting Sources -- 8.2.1 Attenuation of Beta Particles -- 8.2.2 Bremsstrahlung Effects for Beta Shielding -- 8.3 Shielding of Photon Sources -- 8.3.1 Shielding of Good Geometry Photon Sources -- 8.3.2 Half-Value and Tenth-Value Layers -- 8.3.3 Shielding of Poor Geometry Photon Sources -- 8.3.4 Use of Buildup Factors -- 8.3.5 Effect of Buildup on Shield Thickness -- 8.3.6 Mathematical Formulations of the Buildup Factor -- 8.4 Gamma Flux for Distributed Sources -- 8.4.1 Line Sources -- 8.4.2 Ring Sources -- 8.4.3 Disc and Planar Sources -- 8.4.4 Shield Designs for Area Sources.

8.4.5 Gamma Exposure from Thick Slabs -- 8.4.6 Volume Sources -- 8.4.7 Buildup Factors for Layered Absorbers -- 8.5 Shielding of Protons and Light Ions -- 8.6 Summary -- Acknowledgments -- Other Suggested Sources -- Problems - Chapter 8 -- 9 Internal Radiation Dose -- 9.1 Absorbed Dose in Tissue -- 9.2 Accumulated Dose -- 9.2.1 Internal Dose: Medical Uses -- Checkpoints -- 9.3 Factors In The Internal Dose Equation -- 9.3.1 The Dose Reciprocity Theorem -- 9.3.2 Deposition and Clearance Data -- 9.3.3 Multicompartment Retention -- 9.4 Radiation Dose from Radionuclide Intakes -- 9.4.1 Risk-Based Radiation Standards -- 9.4.2 Committed Effective Dose Equivalent (CEDE) -- 9.4.3 Biokinetic Models: Risk-Based Internal Dosimetry -- 9.4.4 Radiation Doses Due to Inhaled Radionuclides -- 9.4.5 Radiation Doses Due to Ingested Radionuclides -- 9.5 Operational Determinations of Internal Dose -- 9.5.1 Submersion Dose -- Checkpoints -- 9.6 Tritium: a Special Case -- 9.6.1 Bioassay of Tritium: a Special Case -- 9.7 Summary -- Other Suggested Sources -- Problems - Chapter 9 -- 10 Environmental Dispersion -- 10.1 Atmospheric Dispersion -- 10.1.1 Atmospheric Stability Effects on Dispersion -- 10.1.2 Atmospheric Stability Classes -- 10.1.3 Calculational Procedure: Uniform Stability Conditions -- 10.1.4 Distance xmax of Maximum Concentration (χmax) -- 10.1.5 Stack Effects -- Checkpoints -- 10.2 Nonuniform turbulence: Fumigation, Building Effects -- 10.2.1 Fumigation -- 10.2.2 Dispersion for an Elevated Receptor -- 10.2.3 Building Wake Effects: Mechanical Turbulence -- 10.2.4 Concentrations of Effluents in Building Wakes -- 10.2.5 Ground-level Area Sources -- 10.2.6 Effect of Mechanical Turbulence on Far-field Diffusion -- 10.3 Puff Releases -- 10.4 Sector-Averaged χ/Q Values -- 10.5 Deposition/Depletion: Guassian Plumes -- 10.5.1 Dry Deposition.

10.5.2 Air Concentration Due to Resuspension.
Abstract:
A practical guide to the basic physics that radiation protection professionals need A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Coverage includes: * The atom as an energy system * An overview of the major discoveries in radiation physics * Extensive discussion of radioactivity, including sources and materials * Nuclear interactions and processes of radiation dose * Calculational methods for radiation exposure, dose, and shielding * Nuclear fission and production of activation and fission products * Specialty topics ranging from nuclear criticality and applied statistics to X rays * Extensive and current resource data cross-referenced to standard compendiums * Extensive appendices and more than 400 figures.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: