
Polymer Composites : Nanocomposites.
Title:
Polymer Composites : Nanocomposites.
Author:
Thomas, Sabu.
ISBN:
9783527652402
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (324 pages)
Contents:
Polymer Composites -- Contents -- The Editors -- List of Contributors -- 1 State of the Art - Nanomechanics -- 1.1 Introduction -- 1.2 Nanoplatelet-Reinforced Composites -- 1.3 Exfoliation-Adsorption -- 1.4 In Situ Intercalative Polymerization Method -- 1.5 Melt Intercalation -- 1.6 Nanofiber-Reinforced Composites -- 1.7 Characterization of Polymer Nanocomposites -- 1.8 Recent Advances in Polymer Nanocomposites -- 1.9 Future Outlook -- References -- 2 Synthesis, Surface Modification, and Characterization of Nanoparticles -- 2.1 Introduction -- 2.2 Synthesis and Modification of Nanoparticles -- 2.2.1 Synthesis of Nanoparticles -- 2.2.2 Synthesis of Titania Nanoparticles -- 2.2.3 Microwave Synthesis of Magnetic Fe3O4 Nanoparticles -- 2.2.4 Magnetic Field Synthesis of Fe3O4 Nanoparticles -- 2.2.5 Synthesis of Fe3O4 Nanoparticles without Inert Gas Protection -- 2.2.6 Synthesis of ZnO Nanoparticles by Two Different Methods -- 2.2.7 Synthesis of Silica Powders by Pressured Carbonation -- 2.2.8 MW-Assisted Synthesis of Bisubstituted Yttrium Garnet Nanoparticles -- 2.2.9 Molten Salt Synthesis of Bisubstituted Yttrium Garnet Nanoparticles -- 2.3 Modification of Nanoparticles -- 2.3.1 Surface Modification of ZnO Nanoparticles -- 2.3.2 Surface Modification of Fe3O4 Nanoparticles -- 2.3.3 Surface Modification of Silica Nanoparticles -- 2.4 Preparation and Characterization of Polymer-Inorganic Nanocomposites -- 2.4.1 Nanopolymer Matrix Composites -- 2.5 Preparation of Polymer-Inorganic Nanocomposites -- 2.5.1 Sol-Gel Processing -- 2.5.2 In Situ Polymerization -- 2.5.3 Particle In Situ Formation -- 2.5.4 Blending -- 2.5.4.1 Solution Blending -- 2.5.4.2 Emulsion or Suspension Blending -- 2.5.4.3 Melt Blending -- 2.5.4.4 Mechanical Grinding/Blending -- 2.5.5 Others -- 2.6 Characterization of Polymer-Inorganic Nanocomposites -- 2.6.1 X-Ray Diffraction.
2.6.2 Infrared Spectroscopy -- 2.6.3 Mechanical Property Test -- 2.6.4 Abrasion Resistance Test -- 2.6.5 Impact Strength -- 2.6.6 Flexural Test -- 2.6.7 Others -- 2.7 Applications of Polymer-Inorganic Nanocomposites -- 2.7.1 Applications of Bi-YIG Films and Bi-YIG Nanoparticle-Doped PMMA -- 2.7.1.1 Magneto-Optical Isolator -- 2.7.1.2 Magneto-Optical Sensor -- 2.7.1.3 Tuned Filter -- 2.7.1.4 Magneto-Optical Recorder -- 2.7.1.5 Magneto-Optic Modulator -- 2.7.1.6 Magneto-Optic Switch -- 2.8 Application of Magnetic Fe3O4-Based Nanocomposites -- 2.9 Applications of ZnO-Based Nanocomposites -- 2.9.1 Gas Sensing Materials -- 2.9.2 Photocatalyst for Degradation of Organic Dye -- 2.9.3 Benard Convection Resin Lacquer Coating -- 2.10 Applications of Magnetic Fluid -- References -- 3 Theory and Simulation in Nanocomposites -- 3.1 Introduction -- 3.1.1 Dispersion of Nanoparticles -- 3.1.2 Interface -- 3.1.3 Crystallization -- 3.1.4 Property Prediction -- 3.2 Analytical and Numerical Techniques -- 3.2.1 Analytical Models -- 3.2.2 Numerical Methods -- 3.2.3 Multiscale Modeling -- 3.3 Formation of Nanocomposites -- 3.3.1 Thermodynamics of Nanocomposite Formation -- 3.3.2 Kinetics of Nanocomposite Formation -- 3.3.3 Morphology of Polymer Nanocomposites -- 3.4 Mechanical Properties -- 3.4.1 Stiffness and Strength -- 3.4.2 Stress Transfer -- 3.4.3 Mechanical Reinforcement -- 3.4.4 Interfacial Bonding -- 3.5 Mechanical Failure -- 3.5.1 Buckling -- 3.5.2 Fatigue -- 3.5.3 Fracture -- 3.5.4 Wear -- 3.5.5 Creep -- 3.6 Thermal Properties -- 3.6.1 Thermal Conductivity -- 3.6.2 Thermal Expansion -- 3.7 Barrier Properties -- 3.8 Rheological Properties -- 3.9 Conclusions -- References -- 4 Characterization of Nanocomposites by Scattering Methods -- 4.1 Introduction -- 4.2 X-Ray Diffraction and Scattering -- 4.2.1 Wide-Angle X-Ray Diffraction.
4.2.2 Wide-Angle X-Ray Diffraction in the Characterization of Polymer-Based Nanocomposites -- 4.2.3 Wide-Angle X-Ray Diffraction in the Characterization of the Structure of the Polymer Matrix -- 4.2.4 Small-Angle X-Ray Scattering -- 4.3 Neutron Scattering -- 4.4 Light Scattering -- References -- 5 Mechanical-Viscoelastic Characterization in Nanocomposites -- 5.1 Introduction -- 5.2 Factors Affecting the Mechanical Behavior of Nanocomposites -- 5.2.1 Influence of the Filler's Aspect Ratio and Dispersion -- 5.2.2 Influence of the Filler-Matrix Interphase -- 5.3 Micromechanical Models for Nanocomposites -- 5.3.1 Basic Assumptions and Preliminary Concepts -- 5.3.1.1 Continuum Models -- 5.3.1.2 Equivalent Continuum Model and Self-Similar Model -- 5.3.1.3 Finite Element Modeling -- 5.3.2 Micromechanical Nanocomposites Modeling -- 5.4 Mechanical Characterization of Nanocomposites under Static Loading -- 5.4.1 Polymer-Layered Silicate Nanocomposites -- 5.4.2 Polymer-CNT Nanocomposites -- 5.4.3 Particulate Polymer Nanocomposites -- 5.5 Characterization by Dynamic Mechanical Thermal Analysis -- 5.6 Mechanical Characterization by Means of Indentation Techniques -- 5.7 Fracture Toughness Characterization of Nanocomposites -- 5.8 Conclusions -- References -- 6 Characterization of Nanocomposites by Optical Analysis -- 6.1 Introduction -- 6.2 Influence of Nanoparticles on the Visual Aspect of Nanocomposites -- 6.3 Characterization of Appearance -- 6.3.1 Gloss -- 6.3.2 Haze -- 6.3.3 Color -- 6.4 Characterization by UV-Visible Spectrophotometry -- 6.5 Characterization by Optical Microscopy -- References -- 7 Characterization of Mechanical and Electrical Properties of Nanocomposites -- 7.1 Introduction -- 7.2 The Influence of the Molding Temperature on the Density of the Nanocomposite Samples Based on the Low-Density Polyethylene.
7.3 Experimental Study of the Temperature Dependence of the Permittivity of the Nanocomposite Materials -- 7.4 Elastic and Viscous Properties of the Nanocomposite Films Based on the Low-Density Polyethylene Matrix -- 7.4.1 Technology of Producing the Nanocomposite Polymeric Films -- 7.4.2 Determination of the Coefficients of Elasticity and Viscosity of Nanocomposite Polymeric Films -- 7.5 Effect of the Nanoparticle Material Density on the Acoustic Parameters of Nanocomposites Based on the Low-Density Polyethylene -- 7.6 Conclusions -- References -- 8 Barrier Properties of Nanocomposites -- 8.1 Introduction -- 8.2 Nanocomposites from Ceramic Oxides -- 8.3 Nanocomposites from Nanotubes -- 8.4 Layered Silicate Nanocomposites -- 8.5 Composite Models of Permeation -- 8.5.1 Nielsen Model -- 8.5.2 Bharadwaj Model -- 8.5.3 Fredrickson and Bicerano Model -- 8.5.4 Cussler Model -- 8.5.5 Gusev and Lusti Model -- 8.6 Techniques Used to Study the Permeability of Polymers and Nanocomposites -- 8.7 Calculation of Breakthrough Time -- 8.8 Applications -- 8.9 Conclusions -- References -- 9 Polymer Nanocomposites Characterized by Thermal Analysis Techniques -- 9.1 Introduction -- 9.2 Thermal Analysis Methods -- 9.2.1 Differential Scanning Calorimetry -- 9.2.2 Thermogravimetric Analysis -- 9.3 Dynamic Mechanical Thermal Analysis -- 9.4 Thermal Mechanical Analysis -- 9.5 Conclusions -- References -- 10 Carbon Nanotube-Filled Polymer Composites -- 10.1 Introduction -- 10.2 Processing Methods -- 10.2.1 Common Approaches -- 10.3 Novel Approaches -- 10.3.1 CNT-Based Membranes and Networks -- 10.3.2 CNT-Based Fibers -- 10.4 Mechanical Properties of Composite Materials -- 10.5 Basic Theory of Fiber-Reinforced Composite Materials -- 10.6 Stress Transfer Efficiency in Composites -- 10.7 Mechanical Properties: Selected Literature Data.
10.8 Electrical Properties of Composite Materials -- 10.9 Electrical Properties: Selected Literature Data -- 10.10 CNT-Polymer Composite Applications -- References -- 11 Applications of Polymer-Based Nanocomposites -- 11.1 Introduction -- 11.2 Preparation of Polymer-Based Nanocomposites -- 11.3 Applications of Nanocomposites -- 11.3.1 Mechanical Properties and Applications -- 11.3.2 Thermal Properties and Applications -- 11.3.3 Electrical Properties and Applications -- 11.3.4 Optical Properties and Applications -- 11.3.4.1 Transmission of Light -- 11.3.4.2 Energy Conversion -- 11.4 Energy Conversion and Storage Capacity and Applications -- 11.5 Biodegradability and Applications -- 11.5.1 Nanocomposites for Medical Applications -- 11.5.2 Nanocomposites for Drug Release Applications -- 11.5.3 Nanocomposites for Food Packaging -- 11.6 Conclusion and Outlook -- References -- 12 Health Hazards and Recycling and Life Cycle Assessment of Nanomaterials and Their Composites -- 12.1 Introduction -- 12.2 Health Hazards of Inorganic Nanoparticles -- 12.3 Nanocomposite Life Cycles and Life Cycle Assessment -- 12.4 Life Cycle Assessment of Nanoparticles and Nanocomposites in Practice -- 12.5 Nanocomposite Life Cycle Management, Including Recycling -- 12.6 Reducing Nanoparticle-Based Health Hazards and Risks Associated with Nanocomposite Life Cycles -- 12.7 Conclusion -- References -- Index.
Abstract:
Polymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles. This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites. The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications. Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View