
Reactive Polymers Fundamentals and Applications : A Concise Guide to Industrial Polymers.
Title:
Reactive Polymers Fundamentals and Applications : A Concise Guide to Industrial Polymers.
Author:
Fink, Johannes Karl.
ISBN:
9781455731589
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (559 pages)
Series:
Plastics Design Library
Contents:
Half Title -- Series Page -- Title Page -- Copyright -- Contents -- PDL Series Editor's Preface -- Preface -- Chapter 1: Unsaturated Polyester Resins -- 1.1 History -- 1.2 Monomers -- 1.2.1 Monomers for an Unsaturated Polyester -- 1.2.1.1 Alcohol Components -- 1.2.1.2 Acid and Anhydride Components -- 1.2.1.3 Amine Modifiers -- 1.2.1.4 Dicyclopentadiene -- 1.2.2 Vinyl Monomers -- 1.2.2.1 Styrenes -- 1.2.2.2 Acrylates and Methacrylates -- 1.2.2.3 Vinyl Ethers -- 1.2.2.4 Other Vinyl Monomers -- 1.2.3 Specialities -- 1.2.3.1 Monomers for Waterborne Unsaturated Polyesters -- 1.2.3.2 Low Emission Modifiers -- 1.2.3.3 Epoxide-Based Unsaturated Polyesters -- 1.2.3.4 Isocyanates -- 1.2.3.5 o-Carboxy Phthalanilic Acid -- 1.2.3.6 Modified Plant Oils -- 1.2.4 Synthesis -- 1.2.4.1 Kinetics of Polyesterification -- 1.2.4.2 Sequence Distribution of Double Bonds -- 1.2.5 Manufacture -- 1.3 Special Additives -- 1.3.1 Inhibitors -- 1.3.1.1 Shelf Life Extension -- 1.3.2 Thickeners -- 1.3.2.1 Multivalent Salts -- 1.3.2.2 Thixotropic Additives -- 1.3.3 Emission Suppressants -- 1.3.4 Fillers -- 1.3.4.1 Inorganic Fillers -- 1.3.4.2 Wood Flour -- 1.3.4.3 Rubber -- 1.3.4.4 Nanocomposites -- 1.3.4.5 Nanoclays -- 1.3.4.6 Carbon Nanotubes -- 1.3.5 Reinforcing Materials -- 1.3.5.1 Glass Fibers -- 1.3.5.2 Wollastonite -- 1.3.5.3 Carbon Fibers -- 1.3.5.4 Natural Fibers -- 1.3.6 Additives for Molding Applications -- 1.3.6.1 Mixture Stabilizing Additives -- 1.3.6.2 Mold Release Agents -- 1.3.7 Low-profile Additives -- 1.3.8 Interpenetrating Polymer Networks -- 1.3.8.1 Poly(urethane)s -- 1.3.8.2 Epoxides -- 1.3.8.3 Vinylester Resins -- 1.3.8.4 Phenolic Resins -- 1.3.8.5 Organic-inorganic Hybrids -- 1.3.9 Poly(urethane) Hybrid Networks -- 1.3.9.1 UV Stabilizers -- 1.3.10 Flame Retardants -- 1.3.10.1 Flame Retardant Additives -- 1.3.10.2 Flame Retardant Polyester Components.
1.3.10.3 Flame Retardant Vinyl Monomers -- 1.3.11 Production Data -- 1.4 Curing -- 1.4.1 Initiator Systems -- 1.4.1.1 In Situ Generated Peroxides -- 1.4.1.2 Functional Peroxides -- 1.4.1.3 Photoinitiators -- 1.4.2 Promoters -- 1.4.3 Initiator Promoter Systems -- 1.4.4 Polymerization -- 1.4.4.1 Kinetics of Curing -- 1.4.4.2 Catalysis by Nanoparticles -- 1.4.4.3 Phase Separation -- 1.5 Properties -- 1.5.1 Structure-properties Relationships -- 1.5.2 Hydrolytic Stability -- 1.5.3 Recycling -- 1.5.3.1 Microwave Radiation -- 1.5.3.2 Poly(ethylene terephthalate) Waste Products -- 1.5.3.3 Cured Unsaturated Polyester Resin Waste -- 1.6 Applications and Uses -- 1.6.1 Decorative Specimens -- 1.6.2 Polyester Concrete -- 1.6.3 Reinforced Materials -- 1.6.4 Coatings -- 1.6.4.1 Powder Coatings -- 1.7 Special Formulations -- 1.7.1 Electrically Conductive Resins -- 1.7.2 Poly(-caprolactone)-perfluoropolyether Copolymers -- 1.7.3 Toner Compositions -- 1.7.4 Pour Point Depressants -- 1.7.5 Biodegradable Polyesters -- 1.7.6 Neutron Shielding -- 1.7.7 Bone Cement -- 1.7.8 Compatibilizers -- 1.7.9 Reactive Melt Modification of Poly(propylene) -- 1.7.10 Toner Resins -- References -- Chapter 2: Poly(urethane)s -- 2.1 History -- 2.2 Monomers -- 2.2.1 Diisocyanates -- 2.2.1.1 Toluene Diisocyanate -- 2.2.1.2 Diphenylmethane Diisocyanate -- 2.2.1.3 Aliphatic Diisocyanates -- 2.2.1.4 Modified Diisocyanates -- 2.2.1.5 Enzymatic Synthesis of Poly(urethane)s -- 2.2.1.6 Synthesis of Urethanes via Carbonate Esters -- 2.2.2 Polyols -- 2.2.2.1 Polyether Polyols -- 2.2.2.2 Polyester Polyols -- 2.2.3 Other Polyols -- 2.2.3.1 Hydrocarbon Polyols -- 2.2.3.2 Polythioether Polyols -- 2.2.3.3 Polyacetal Polyols -- 2.2.3.4 Acrylic Polyols -- 2.2.3.5 Liquefied Wood -- 2.2.3.6 Natural Hydroxyl Compounds -- 2.2.4 Polyamines -- 2.2.5 Chain Extenders -- 2.2.6 Catalysts -- 2.2.7 Blowing.
2.2.7.1 Gelling and Crosslinking -- 2.2.7.2 Tertiary Amine Catalysts -- 2.2.7.3 Mechanisms of Tertiary Amine Catalysts -- 2.2.7.4 Reactive Catalysts -- 2.2.7.5 Anionic Catalysts -- 2.2.7.6 Organometallic Catalysts -- 2.3 Special Additives -- 2.3.1 Fillers -- 2.3.1.1 Cork -- 2.3.1.2 Agar -- 2.3.1.3 Carbon Nanomaterials -- 2.3.1.4 Rectorite Nanocomposites -- 2.3.1.5 Zeolite -- 2.3.1.6 Iron Particles -- 2.3.2 Reinforcing Materials -- 2.3.2.1 Cellulose Nanofibers -- 2.3.2.2 Nanosilica Particles -- 2.3.2.3 Layered Silicate Nanocomposites -- 2.3.2.4 Nanoclays -- 2.3.2.5 Nano Carbonate Particles -- 2.3.3 Flame Retardants -- 2.3.3.1 Poly(epichlorohydrin) -- 2.3.3.2 Expandable Graphite -- 2.3.3.3 Charring Agents -- 2.4 Curing -- 2.4.1 Recycling -- 2.4.1.1 Solvolysis -- 2.4.1.2 Ultrasonic Reactor -- 2.4.1.3 Polyacetal-modified Poly(urethane)s -- 2.4.1.4 Production Wastes -- 2.4.1.5 Agricultural Wastes -- 2.4.1.6 Waste Water -- 2.5 Properties -- 2.5.1 Mechanical Properties -- 2.5.2 Thermal Properties -- 2.5.3 Weathering Resistance -- 2.6 Applications and Uses -- 2.6.1 Casting -- 2.6.2 Foams -- 2.6.3 Membranes -- 2.7 Special Formulations -- 2.7.1 Interpenetrating Networks -- 2.7.2 Methacrylate Copolymers -- 2.7.3 Grafting with Isocyanates -- 2.7.3.1 Chitosan -- 2.7.4 Coatings -- 2.7.5 Medical Applications -- 2.7.5.1 Siloxane-based Poly(urethane)s -- 2.7.5.2 Blood Compatibility -- 2.7.5.3 Degradable Poly(urethane)s -- 2.7.5.4 Prevention of Poly(urethane) Heart Valve Cusp Calcification -- 2.7.5.5 Prevention of Poly(urethane) Heart Valve Cusp Calcification -- 2.7.6 Oil Spill Cleanup -- 2.7.7 Footwear -- 2.7.8 Waterborne Poly(urethane)s -- 2.7.9 Stamps -- 2.7.10 Ceramic Foams -- 2.7.11 Adhesion Modification -- 2.7.12 Electrolytes -- References -- Chapter 3: Epoxy Resins -- 3.1 History -- 3.2 Monomers -- 3.2.1 Epoxides -- 3.2.1.1 Epoxide Equivalent Weight.
3.2.2 Phenols -- 3.2.3 Specialities -- 3.2.3.1 Hyperbranched Polymers -- 3.2.3.2 Liquid Crystalline Epoxide Resins -- 3.2.4 Manufacture -- 3.2.4.1 Epoxides -- 3.2.4.2 Glycidyl Ethers -- 3.2.4.3 Fluorinated Epoxides -- 3.3 Special Additives -- 3.3.1 Crosslinking Agents -- 3.3.2 Toughening Agents -- 3.3.2.1 Polyvinyl Compounds -- 3.3.2.2 Polycondensates -- 3.3.2.3 Liquid Rubbers -- 3.3.2.4 Silicone Elastomers -- 3.3.2.5 Rubbery Epoxy Compounds -- 3.3.2.6 Phase Separation -- 3.3.2.7 Preformed Particles -- 3.3.2.8 Inorganic Particles -- 3.3.3 Antiplasticizers -- 3.3.4 Lubricants -- 3.3.5 Adhesion Improvers -- 3.3.6 Conductivity Modifiers -- 3.3.7 Reinforcing Materials -- 3.3.7.1 Composites and Laminates -- 3.3.7.2 Nanocomposites -- 3.3.8 Graphene -- 3.3.9 Interpenetrating Polymer Networks -- 3.3.9.1 Curing Kinetics -- 3.3.9.2 Unsaturated Polyesters -- 3.3.9.3 Acrylics -- 3.3.9.4 Urethane-modified Bismaleimide -- 3.3.9.5 Poly(caprolactone) and Poly(urethane) -- 3.3.9.6 Electrically Conductive Networks -- 3.3.10 Organic and Inorganic Hybrids -- 3.3.11 Flame Retardants -- 3.3.12 Production Data -- 3.4 Curing -- 3.4.1 Initiator Systems -- 3.4.2 Compounds with Activated Hydrogen -- 3.4.2.1 Amines -- 3.4.2.2 Ketimines -- 3.4.2.3 Amino Amides -- 3.4.2.4 Metal salts -- 3.4.2.5 Phenols -- 3.4.2.6 Anhydride Compounds -- 3.4.2.7 Polybasic Acids -- 3.4.2.8 Polybasic Esters -- 3.4.3 Coordination Catalysts -- 3.4.4 Ionic Curing -- 3.4.4.1 Anionic Polymerization -- 3.4.4.2 Cationic Polymerization -- 3.4.5 Photoinitiators -- 3.4.5.1 Aryl Diazonium Tetrafluoroborates -- 3.4.5.2 Aryl Salts -- 3.4.5.3 Photosensitizers -- 3.4.5.4 Calixarenes -- 3.4.6 Derivatives of Michler's Ketone -- 3.4.6.1 Photoinitiator Systems -- 3.4.7 Epoxy Systems with Vinyl Groups -- 3.4.8 Curing Kinetics -- 3.4.8.1 Viscometry -- 3.4.8.2 Differential Scanning Calorimetry.
3.4.8.3 Temperature-modulated Differential Scanning Calorimetry -- 3.4.8.4 Dielectric Analysis -- 3.4.8.5 In Situ Fourier Transform Infrared Spectroscopy -- 3.4.8.6 Fluorescence Response -- 3.4.9 Thermal Curing -- 3.4.10 Microwave Curing -- 3.5 Properties -- 3.5.1 Hybrid Polymers and Mixed Polymers -- 3.5.1.1 Epoxy-siloxane Copolymers -- 3.5.1.2 Maleimide-epoxy Resins -- 3.5.2 Recycling -- 3.5.2.1 Solvolysis -- 3.5.2.2 Reworkable Epoxies for Electronic Packaging Application -- 3.5.2.3 Recycled Poly(ethylene terephthalate) -- 3.6 Applications and Uses -- 3.6.1 Coatings -- 3.6.2 Foams -- 3.6.3 Adhesives -- 3.6.4 Molding Techniques -- 3.6.5 Stabilizers for Poly(vinyl chloride) -- 3.7 Special Formulations -- 3.7.1 Development of Formulations -- 3.7.2 Restoration Materials -- 3.7.3 Epoxy Polymer Concrete -- 3.7.4 Biodegradable Epoxy-polyester Resins -- 3.7.5 Swellable Epoxies -- 3.7.6 Membrane Materials -- 3.7.7 Controlled-release Formulations for Agriculture -- 3.7.8 Shape Memory Composites -- 3.7.9 Electronic Packaging Application -- 3.7.10 Ion-selective Electrodes -- 3.7.11 Solid Polymer Electrolytes -- 3.7.12 Optical Resins -- 3.7.12.1 Lenses -- 3.7.12.2 LEDs -- 3.7.12.3 Solar Cells -- 3.7.12.4 Liquid Crystal Displays -- 3.7.12.5 Holography -- 3.7.12.6 Nonlinear Optical Polymers -- 3.7.13 Reactive Solvents -- 3.7.13.1 Poly(butylene terephthalate) -- 3.7.13.2 Poly(phenylene ether) -- 3.7.14 Encapsulated Systems -- 3.7.15 Functionalized Polymers -- 3.7.15.1 Tougheners -- 3.7.16 Epoxy Resins as Compatibilizers -- 3.7.16.1 Polyamide Blends -- 3.7.16.2 Poly(butylene terephthalate) -- 3.7.17 Surface Metallization -- References -- Chapter 4: Phenol/Formaldehyde Resins -- 4.1 History -- 4.2 Monomers -- 4.2.1 Phenol -- 4.2.2 o-Cresol -- 4.2.3 Cardanol -- 4.2.4 Formaldehyde -- 4.2.5 Multihydroxymethylketones -- 4.2.6 Production Data of Important Monomers.
4.2.7 Basic Resin Types.
Abstract:
The use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process-these in turn cause changes in performance and properties. Material selection and control of the reaction are essential to acheive optimal performance. The second edition of Reactive Polymers Fundamentals and Applications introduces engineers and scientists to the range of reactive polymers available, explains the reactions that take place, and details applications and performance benefits. Basic principles and industrial processes are described for each class of reactive resin (thermoset), as well as additives, the curing process, and applications and uses. The initial chapters are devoted to individual resin types (e.g. epoxides, cyanacrylates, etc.); followed by more general chapters on topics such as reactive extrusion and dental applications. Material new to this edition includes the most recent developments, applications and commercial products for each chemical class of thermosets, as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers, and case studies. Injection molding of reactive polymers, radiation curing, thermosetting elastomers, and reactive extrusion equipment are all covered as well. Most comprehensive source of information about reactive polymers Covers basics as well as most recent developments, including reactive biopolymers, recycling of reactive polymers, nanocomposites, and fluorosilicones Indispensable guide for engineers and advanced students alike-providing extensive literature and patent review.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View