Cover image for Applied Thermodynamics of Fluids.
Applied Thermodynamics of Fluids.
Title:
Applied Thermodynamics of Fluids.
Author:
Browarzik, Dieter.
ISBN:
9781849730983
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (535 pages)
Contents:
Applied Thermodynamics of Fluids -- Contents -- List of Contributors -- Experimental Thermodynamics Series -- Acknowledgments -- Chapter 1 Introduction -- References -- Chapter 2 Fundamental Considerations -- 2.1 Introduction -- 2.2 Basic Thermodynamics -- 2.2.1 Homogeneous Functions -- 2.2.2 Thermodynamic Properties from Differentiation of Fundamental Equations -- 2.3 Deviation Functions -- 2.3.1 Residual Functions -- 2.3.2 Evaluation of Residual Functions -- 2.4 Mixing and Departure Functions -- 2.4.1 Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables -- 2.4.2 Departure Functions with Temperature, Pressure and Composition as the Independent Variables -- 2.5 Mixing and Excess Functions -- 2.6 Partial Molar Properties -- 2.7 Fugacity and Fugacity Coefficients -- 2.8 Activity Coefficients -- 2.9 The Phase Rule -- 2.10 Equilibrium Conditions -- 2.10.1 Phase Equilibria -- 2.10.2 Chemical Equilibria -- 2.11 Stability and the Critical State -- 2.11.1 Densities and Fields -- 2.11.2 Stability -- 2.11.3 Critical State -- References -- Chapter 3 The Virial Equation of State -- 3.1 Introduction -- 3.1.1 Temperature Dependence of the Virial Coefficients -- 3.1.2 Composition Dependence of the Virial Coefficients -- 3.1.3 Convergence of the Virial Series -- 3.1.4 The Pressure Series -- 3.2 Theoretical Background -- 3.2.1 Virial Coefficients of Hard-Core-Square-Well Molecules -- 3.3 Thermodynamic Properties of Gases -- 3.3.1 Perfect-gas and Residual Properties -- 3.3.2 Helmholtz Energy and Gibbs Energy -- 3.3.3 Perfect-Gas Properties -- 3.3.4 Residual Properties -- 3.4 Estimation of Second and Third Virial Coefficients -- 3.4.1 Application of Intermolecular Potential-energy Functions -- 3.4.2 Corresponding-states Methods -- References -- Chapter 4 Cubic and Generalized van der Waals Equations of State.

4.1 Introduction -- 4.2 Cubic Equation of State Formulation -- 4.2.1 The van der Waals Equation of State (1873) -- 4.2.2 The Redlich and Kwong Equation of State (1949) -- 4.2.3 The Soave, Redlich and Kwong Equation of State (1972) -- 4.2.4 The Peng and Robinson Equation of State (1976) -- 4.2.5 The Patel and Teja (PT) Equation of State (1982) -- 4.2.6 The α Parameter -- 4.2.7 Volume Translation -- 4.2.8 The Elliott, Suresh and Donohue (ESD) Equation of State (1990) -- 4.2.9 Higher-Order Equations of State Rooted to the Cubic Equations of State -- 4.2.10 Extension of Cubic Equations of State to Mixtures -- 4.3 Applications -- 4.3.1 Pure Components -- 4.3.2 Oil and Gas Industry - Hydrocarbons and Petroleum Fractions -- 4.3.3 Chemical Industry - Polar and Hydrogen Bonding Fluids -- 4.3.4 Polymers -- 4.3.5 Transport Properties -- 4.4 Conclusions -- References -- Chapter 5 Mixing and Combining Rules -- 5.1 Introduction -- 5.2 The Virial Equation of State -- 5.3 Cubic Equations of State -- 5.3.1 Mixing Rules -- 5.3.2 Combining Rules -- 5.3.3 Non-Quadratic Mixing and Combining Rules -- 5.3.4 Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model -- 5.4 Multi-Parameter Equations of State -- 5.4.1 Benedict, Webb, and Rubin Equation of State -- 5.4.2 Generalization with the Acentric Factor -- 5.4.3 Helmholtz-Function Equations of State -- 5.5 Mixing Rules for Hard Spheres and Association -- 5.5.1 Mixing and Combining Rules for SAFT -- 5.5.2 Cubic Plus Association Equation of State -- References -- Chapter 6 The Corresponding-States Principle -- 6.1 Introduction -- 6.2 Theoretical Considerations -- 6.3 Determination of Shape Factors -- 6.3.1 Other Reference Fluids -- 6.3.2 Exact Shape Factors -- 6.3.3 Shape Factors from Generalized Equations of State -- 6.4 Mixtures -- 6.4.1 van der Waals One-Fluid Theory.

6.4.2 Mixture Corresponding-States Relations -- 6.5 Applications of Corresponding-States Theory -- 6.5.1 Extended Corresponding-States for Natural Gas Systems -- 6.5.2 Extended Lee-Kesler -- 6.5.3 Generalized Crossover Cubic Equation of State -- 6.6 Conclusions -- References -- Chapter 7 Thermodynamics of Fluids at Meso and Nano Scales -- 7.1 Introduction -- 7.2 Thermodynamic Approach to Meso-Heterogeneous Systems -- 7.2.1 Equilibrium Fluctuations -- 7.2.2 Local Helmholtz Energy -- 7.3 Applications of Meso-Thermodynamics -- 7.3.1 Van der Waals Theory of a Smooth Interface -- 7.3.2 Polymer Chain in a Dilute Solution -- 7.3.3 Building a Nanoparticle Through Self Assembly -- 7.3.4 Modulated Fluid Phases -- 7.4 Meso-Thermodynamics of Criticality -- 7.4.1 Critical Fluctuations -- 7.4.2 Scaling Relations -- 7.4.3 Near-Critical Interface -- 7.4.4 Divergence of Tolman's Length -- 7.5 Competition of Meso-Scales -- 7.5.1 Crossover to Tricriticality in Polymer Solutions -- 7.5.2 Tolman's Length in Polymer Solutions -- 7.5.3 Finite-size Scaling -- 7.6 Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation -- 7.6.1 Relaxation of Fluctuations -- 7.6.2 Critical Slowing Down -- 7.6.3 Homogeneous Nucleation -- 7.6.4 Spinodal Decomposition -- 7.7 Conclusion -- References -- Chapter 8 SAFT Associating Fluids and Fluid Mixtures -- 8.1 Introduction -- 8.2 Statistical Mechanical Theories of Association and Wertheim's Theory -- 8.3 SAFT Equations of State -- 8.3.1 SAFT-HS and SAFT-HR -- 8.3.2 Soft-SAFT -- 8.3.3 SAFT-VR -- 8.3.4 PC-SAFT -- 8.3.5 Summary -- 8.4 Extensions of the SAFT Approach -- 8.4.1 Modelling the Critical Region -- 8.4.2 Polar Fluids -- 8.4.3 Ion-Containing Fluids -- 8.4.4 Modelling Inhomogeneous Fluids -- 8.4.5 Dense Phases: Liquid Crystals and Solids -- 8.5 Parameter Estimation: Towards more Predictive Approaches.

8.5.1 Pure-component Parameter Estimation -- 8.5.2 Use of Quantum Mechanics in SAFT Equations of State -- 8.5.3 Unlike Binary Intermolecular Parameters -- 8.6 SAFT Group-Contribution Approaches -- 8.6.1 Homonuclear Group-Contribution Models in SAFT -- 8.6.2 Heteronuclear Group Contribution Models in SAFT -- 8.7 Concluding Remarks -- References -- Chapter 9 Polydisperse Fluids -- 9.1 Introduction -- 9.2 Influence of Polydispersity on the Liquid+Liquid Equilibrium of a Polymer Solution -- 9.3 Approaches to Polydispersity -- 9.3.1 The Pseudo-component Method -- 9.3.2 Continuous Thermodynamics -- 9.4 Application to Real Systems -- 9.4.1 Polymer Systems -- 9.4.2 Petroleum Fluids, Asphaltenes, Waxes and Other Applications -- 9.5 Conclusions -- References -- Chapter 10 Thermodynamic Behaviour of Fluids near Critical Points -- 10.1 Introduction -- 10.2 General Theory of Critical Behaviour -- 10.2.1 Scaling Fields, Critical Exponents, and Critical Amplitudes -- 10.2.2 Parametric Equation of State -- 10.3. One-Component Fluids -- 10.3.1 Simple Scaling -- 10.3.2 Revised Scaling -- 10.3.3 Complete Scaling -- 10.3.4 Vapour-Liquid Equilibrium -- 10.3.5 Symmetric Corrections to Scaling -- 10.4 Binary Fluid Mixtures -- 10.4.1 Isomorphic Critical Behaviour of Mixtures -- 10.4.2 Incompressible Liquid Mixtures -- 10.4.3 Weakly Compressible Liquid Mixtures -- 10.4.4 Compressible Fluid Mixtures -- 10.4.5 Dilute Solutions -- 10.5 Crossover Critical Behaviour -- 10.5.1 Crossover from Ising-like to Mean-Field Critical Behaviour -- 10.5.2 Effective Critical Exponents -- 10.5.3 Global Crossover Behaviour of Fluids -- 10.6 Discussion -- Acknowledgements -- References -- Chapter 11 Phase Behaviour of Ionic Liquid Systems -- 11.1 Introduction -- 11.2 Phase Behaviour of Binary Ionic Liquid Systems -- 11.2.1 Phase Behaviour of (Ionic Liquid+Gas Mixtures).

11.2.2 Phase Behaviour of (Ionic Liquid+Water) -- 11.2.3 Phase Behaviour of (Ionic Liquid+Organic) -- 11.3 Phase Behaviour of Ternary Ionic Liquid Systems -- 11.3.1 Phase Behaviour of (Ionic Liquid+Carbon Dioxide+Organic) -- 11.3.2 Phase Behaviour of (Ionic Liquid+Aliphatic+Aromatic) -- 11.3.3 Phase Behaviour of (Ionic Liquid+Water+Alcohol) -- 11.3.4 Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures -- 11.4 Modeling of the Phase Behaviour of Ionic Liquid Systems -- 11.4.1 Molecular Simulations -- 11.4.2 Excess Gibbs-energy Methods -- 11.4.3 Equation of State Modeling -- 11.4.4 Quantum Chemical Methods -- References -- Chapter 12 Multi-parameter Equations of State for Pure Fluids and Mixtures -- 12.1 Introduction -- 12.2 The Development of a Thermodynamic Property Formulation -- 12.3 Fitting an Equation of State to Experimental Data -- 12.3.1 Recent Nonlinear Fitting Methods -- 12.4 Pressure-Explicit Equations of State -- 12.4.1 Cubic Equations -- 12.4.2 The Benedict-Webb-Rubin Equation of State -- 12.4.3 The Bender Equation of State -- 12.4.4 The Jacobsen-Stewart Equation of State -- 12.4.5 Thermodynamic Properties from Pressure-Explicit Equations of State -- 12.5 Fundamental Equations -- 12.5.1 The Equation of Keenan, Keyes, Hill, and Moore -- 12.5.2 The Equations of Haar, Gallagher, and Kell -- 12.5.3 The Equation of Schmidt and Wagner -- 12.5.4 Reference Equations of Wagner -- 12.5.5 Technical Equations of Span and of Lemmon -- 12.5.6 Recent Equations of State -- 12.5.7 Thermodynamic Properties from Helmholtz Energy Equations of State -- 12.6 Comparisons of Property Formulations -- 12.7 Recommended Multi-Parameter Equations of State -- 12.8 Equations of State for Mixtures -- 12.8.1 Extended Corresponding States Methods -- 12.8.2 Mixture Properties from Helmholtz Energy Equations of State.

12.9 Software for Calculating Thermodynamic Properties.
Abstract:
Published under the auspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: