Cover image for Microwave Induced Plasma Analytical Spectrometry.
Microwave Induced Plasma Analytical Spectrometry.
Title:
Microwave Induced Plasma Analytical Spectrometry.
Author:
Jankowski, Krzysztof J.
ISBN:
9781849732147
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (263 pages)
Series:
RSC Analytical Spectroscopy Series ; v.12

RSC Analytical Spectroscopy Series
Contents:
Microwave Induced Plasma Analytical Spectrometry -- Contents -- Chapter 1 An Introduction to Microwave Plasma Spectrometries -- 1.1 Introduction -- 1.1.1 Historical Background -- 1.1.2 The Present Status of Microwave Plasma Spectrometry -- 1.2 Energy Flow between Microwave Plasma and Analyte -- 1.2.1 Microwave Power Absorption by the Plasma -- 1.2.2 Plasma-Sample Interaction -- 1.2.3 Analyte Excitation and Ionization -- 1.2.4 Summary: Energy Flow Diagram -- 1.3 Microwave Plasma Generation -- 1.3.1 Microwave Plasma Geometries (Configurations) -- 1.3.2 Power Density versus Plasma Stability -- 1.4 Basic Physical Characteristics of a Microwave Plasma Discharge -- 1.5 Spectroscopic Techniques Employing Microwave Induced Plasmas -- References -- Chapter 2 Instrumentation for Microwave Induced Plasma Optical Emission Spectrometry -- 2.1 The Components of a Microwave Induced Plasma Optical Emission Spectrometry System -- 2.2 Microwave Induced Plasma Torches -- 2.2.1 Torch Designs -- 2.2.2 The Importance of Vertical Positioning of a Microwave Induced Plasma Torch -- 2.3 Pros and Cons of the Microwave Induced Plasma Technique -- References -- Chapter 3 Principles of Operation and Construction of Microwave Plasma Cavities -- 3.1 E- and H-type Discharges at Different Gas Pressures and Frequencies -- 3.1.1 Choice of Operating Frequency -- 3.2 Some Basic Knowledge about Microwave Transmission Lines and Resonant Cavities -- 3.2.1 Requirements for an Ideal Microwave Cavity -- 3.2.2 What Makes a Good Microwave Plasma? -- 3.2.3 Sample Introduction into a Microwave Plasma -- 3.3 General Classification of Possible Microwave Plasma Sources -- 3.3.1 E-type Microwave Plasma Sources -- 3.3.2 H-type Microwave Plasma Sources -- 3.3.3 Hybrid EH-types of Microwave Plasma Sources -- 3.4 Making Annular-shaped Microwave Plasmas.

3.4.1 Introducing the Symmetry of Microwave Energy Coupling and Making a Doughnut-shaped Plasma -- 3.4.2 Plasma-to-doughnut Shape Approaches -- 3.4.3 Making the Annular-shaped Microwave Plasma -- 3.5 The Concept of Microwave Cavities with Rotating Microwave Fields -- 3.5.1 Comments on Plasma Contamination in the New Capacitive Microwave Plasma Systems -- 3.6 Final Remarks: Thinking of the Future -- References -- Chapter 4 Microwave Safety -- 4.1 Introduction -- 4.2 Microwave Frequencies Permitted to be Used in Analytical Instrumentation -- 4.3 Working with Microwave Plasmas -- 4.4 General Rules and Methods -- References -- Chapter 5 Optical Emission Spectrometry with Microwave Plasmas -- 5.1 Origins of Atomic Spectra -- 5.2 Basic Spectroscopy Practice -- 5.2.1 Spectral Line Intensity -- 5.2.2 Background Correction -- 5.2.3 Transient Signal Measurement -- 5.3 Instrumentation -- 5.3.1 Spectrometer Configurations -- 5.3.2 The Use of Echelle Optics to Observe the Emission from Microwave Plasmas -- 5.3.3 Interference Filters -- 5.3.4 Instruments Based on Fibre Optics -- 5.3.5 Detection Systems -- 5.4 The Microwave Induced Plasma Spectrum: General Description -- 5.5 Provisional Wavelength Tables Specific for Microwave Induced Plasma Spectra -- References -- Chapter 6 Introduction of Gases and Vapours into Microwave Plasmas -- 6.1 Introduction -- 6.2 Continuous Gas Introduction -- 6.3 Hydride Generation and Related Techniques -- 6.4 Generation of Other Gaseous Species -- 6.5 Microwave Induced Plasma Coupling with Gas Chromatographic Techniques -- 6.5.1 Atomic Emission Detector -- 6.6 Solid-phase Microextraction -- 6.7 Quantitative Analysis of Gases -- References -- Chapter 7 Solution and Slurry Nebulization Coupling with Microwave Plasmas -- 7.1 Nebulization Techniques Compatible with Microwave Plasmas -- 7.2 Plasma Tolerance to Solvent Loading.

7.3 Nebulizer Designs -- 7.3.1 Pneumatic Nebulizers -- 7.3.2 Ultrasonic Nebulizers -- 7.3.3 Spray Chambers and Desolvation Systems -- 7.3.4 Flow Injection Analysis -- 7.4 Nebulization Methods Appropriate for Different Sample Classes -- 7.5 Microsampling Techniques for Liquids -- 7.6 Dual-flow Nebulization Techniques -- 7.7 Slurry Nebulization -- 7.8 Separation/Preconcentration Techniques and Solution Nebulization -- References -- Chapter 8 Solid Sampling Techniques for Microwave Plasmas -- 8.1 Introduction -- 8.2 Methods that Convert Solid Samples into an Aerosol or Vapour -- 8.2.1 Spark and Arc Ablation -- 8.2.2 Laser Ablation -- 8.2.3 Electrothermal Vaporization -- 8.3 Discrete Powder Introduction -- 8.4 Continuous Powder Introduction -- 8.5 Separation Methods Coupled to Continuous Powder Introduction -- 8.6 Analysis of Powdered Samples by CPI-MWP-OES -- References -- Chapter 9 Optimization of the MWP-OES System -- 9.1 What do we Optimize? -- 9.1.1 Sample Introduction System-related Parameters -- 9.1.2 Source-related Parameters -- 9.1.3 Spectrometer-related Parameters -- 9.2 Sequence for Optimizing the Parameters -- 9.3 Relation between Analytical Signal and Aerosol (Sample) Parameters -- 9.4 Optimizing Plasma Parameters for Trace Analysis -- 9.5 Instrument Tests -- References -- Chapter 10 Analytical Performance of MWP-OES -- 10.1 Introduction -- 10.2 Interferences in MWP-OES -- 10.2.1 Non-spectral Interferences in Microwave Plasmas -- 10.3 Calibration Strategies -- 10.4 General Analytical Characteristics of MWP-OES -- 10.5 Comparison of Different MWP-based Techniques -- 10.6 Microwave Plasmas versus Other Plasma Sources -- References -- Chapter 11 Analytical Applications of MWP-OES -- 11.1 Microwave Plasma Spectroscopic Techniques: Overview of Practical Uses -- 11.1.1 Types of Analyses.

11.2 Selected Applications of MWP-OES in Environmental Analysis -- 11.3 Selected Applications of MWP-OES in Clinical Analysis -- 11.4 Selected Applications of MWP-OES in Industrial Analysis -- 11.5 Selected Applications of MWP-OES in Geological Analysis -- 11.6 Selected Applications of MIP-OES in Speciation Studies -- References -- Chapter 12 Non-emission Microwave Plasma Spectroscopic Techniques and Tandem Sources -- 12.1 Microwave Plasma Atomic Absorption Spectrometry -- 12.1.1 Instrumental Setup -- 12.2 Microwave Plasma Atomic Fluorescence Spectrometry -- 12.3 Microwave Plasma Mass Spectrometry -- 12.4 Microwave Plasma Cavity Ringdown Spectroscopy -- 12.5 Tandem Sources and Miscellaneous -- References -- Chapter 13 The Future for Microwave Plasma Spectrometry -- Appendix -- Subject Index.
Abstract:
This book is the most comprehensive publication on MIP technology and MIP-OES analytical spectrometry with an emphasis on practical issues.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: