Cover image for Microwaves in Nanoparticle Synthesis : Fundamentals and Applications.
Microwaves in Nanoparticle Synthesis : Fundamentals and Applications.
Title:
Microwaves in Nanoparticle Synthesis : Fundamentals and Applications.
Author:
Horikoshi, Satoshi.
ISBN:
9783527648153
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (350 pages)
Contents:
Cover -- Title page -- Copyright page -- Contents -- Preface -- List of Contributors -- 1: Introduction to Nanoparticles -- 1.1 General Introduction to Nanoparticles -- 1.2 Methods of Nanoparticle Synthesis -- 1.3 Surface Plasmon Resonance and Coloring -- 1.4 Control of Size, Shape, and Structure -- 1.4.1 Size Control of Nanoparticles -- 1.4.2 Shape Control of Nanoparticles -- 1.4.3 Structure Control of Nanoparticles -- 1.5 Reducing Agent in Nanoparticle Synthesis -- 1.6 Applications of Metallic Nanoparticles -- 1.6.1 Application of Nanoparticles in Paints -- 1.6.2 Application in Chemical Catalysis -- 1.6.3 Application of Nanoparticles in Micro-wiring -- 1.6.4 Application of Nanoparticles in Medical Treatments -- References -- 2: General Features of Microwave Chemistry -- 2.1 Microwave Heating -- 2.2 Some Applications of Microwave Heating -- 2.3 Microwave Chemistry -- 2.3.1 Microwaves in Organic Syntheses -- 2.3.2 Microwaves in Polymer Syntheses -- 2.3.3 Microwaves in Inorganic Syntheses -- 2.3.4 Microwave Extraction -- 2.3.5 Microwave Discharge Electrodeless Lamps -- 2.4 Microwave Chemical Reaction Equipment -- References -- 3: Considerations of Microwave Heating -- 3.1 General Considerations of Microwave Heating -- 3.1.1 Electromagnetic Waves and a Dielectric Material -- 3.1.2 Heating a Substance by the Microwaves' Alternating Electric Field -- 3.1.3 Heating a Dielectric by the Microwaves' Alternating Magnetic Field -- 3.1.4 Penetration Depth of Microwaves in a Dielectric Material -- 3.1.5 Frequency Effects in Chemical Reactions -- 3.2 Peculiar Microwave Heating -- 3.2.1 Special Temperature Distribution -- 3.2.2 Superheating -- 3.2.3 Selective Heating in Chemical Reactions -- 3.3 Relevant Points of Effective Microwave Heating -- References -- 4: Combined Energy Sources in the Synthesis of Nanomaterials -- 4.1 Introduction.

4.2 Simultaneous Ultrasound/Microwave Treatments -- 4.3 Sequential Ultrasound and Microwaves -- 4.3.1 Sequential Steps of the Same Reaction -- 4.3.2 Sequential Reactions -- 4.4 Conclusions -- References -- 5: Nanoparticle Synthesis through Microwave Heating -- 5.1 Introduction -- 5.2 Microwave Frequency Effects -- 5.2.1 Synthesis of Ag Nanoparticles through the Efficient Use of 5.8-GHz Microwaves -- 5.2.2 Metal Nanoparticle Synthesis through the Use of 915-MHz Microwaves -- 5.3 Nanoparticle Synthesis under a Microwave Magnetic Field -- 5.4 Synthesis of Metal Nanoparticles by a Greener Microwave Hydrothermal Method -- 5.5 Nanoparticle Synthesis with Microwaves under Cooling Conditions -- 5.6 Positive Aspects of Microwaves' Thermal Distribution in Nanoparticle Synthesis -- 5.7 Microwave-Assisted Nanoparticle Synthesis in Continuous Flow Apparatuses -- 5.7.1 Microwave Desktop System of Nanoparticle Synthesis in a Continuous Flow Reactor -- 5.7.2 Synthesis of Metal Nanoparticles with a Hybrid Microreactor/Microwave System -- 5.7.3 Other Examples of Continuous Microwave Nanoparticle Synthesis Equipment -- 5.7.4 Microwave Calcination Equipment for the Fabrication of Nanometallic Inks -- 5.7.5 Synthesis of Metal Nanoparticle Using Microwave Liquid Plasma -- 5.7.6 Compendium of Microwave-Assisted Nanoparticle Syntheses -- References -- 6: Microwave-Assisted Solution Synthesis of Nanomaterials -- 6.1 Introduction -- 6.2 Synthesis of ZnO Nanocrystals -- 6.2.1 Synthesis of Colloidal ZnO Nanocrystals Clusters -- 6.2.2 Controlled Growth of Basic and Complex ZnO Nanostructures -- 6.2.3 Synthesis of ZnO Nanoparticles in Benzyl Alcohol -- 6.3 Synthesis of α-Fe2O3 Nanostructures -- 6.3.1 α-Fe2O3 Hollow Spheres -- 6.3.2 Monodisperse α-Fe2O3 Nanocrystals with Continuous Aspect-Ratio Tuning and Precise Shape Control.

6.3.3 Self-Assembled Hierarchical α-Fe2O3 Nanoarchitectures -- 6.4 Element-Based Nanostructures and Nanocomposite -- 6.4.1 Silver Nanostructures -- 6.4.2 Te Nanostructures -- 6.4.3 Selenium/Carbon Colloids -- 6.5 Chalcogenide Nanostructures -- 6.5.1 Cadmium Chalcogenides -- 6.5.2 Lead Chalcogenides -- 6.5.3 Zinc Chalcogenides -- 6.6 Graphene -- 6.7 Summary -- References -- 7: Precisely Controlled Synthesis of Metal Nanoparticles under Microwave Irradiation -- 7.1 Introduction -- 7.1.1 General Introduction - Green Chemistry -- 7.1.2 Microwave Chemistry for the Preparation of Metal Nanoparticles -- 7.2 Precise Control of Single Component under Microwave Irradiation -- 7.2.1 Spheres -- 7.2.2 Nanorods and Nanowires -- 7.2.3 Other Morphologies -- 7.3 Precise Control of Multicomponent Structures under Microwave Irradiation -- 7.3.1 Multicomponent Nanoparticles -- 7.3.2 Metal Nanoparticles on Supports -- 7.4 An Example of Mass Production Oriented to Application -- 7.5 Conclusion -- References -- 8: Microwave-Assisted Nonaqueous Routes to Metal Oxide Nanoparticles and Nanostructures -- 8.1 Introduction -- 8.2 Nonaqueous Sol-Gel Chemistry -- 8.3 Polyol Route -- 8.4 Benzyl Alcohol Route -- 8.5 Other Mono-Alcohols -- 8.6 Ionic Liquids -- 8.7 Nonaqueous Microwave Chemistry beyond Metal Oxides -- 8.8 Summary and Outlook -- References -- 9: Input of Microwaves for Nanocrystal Synthesis and Surface Functionalization Focus on Iron Oxide Nanoparticles -- 9.1 Introduction -- 9.2 Biomedical Applications of Iron Oxide Nanoparticles -- 9.3 Nanoparticle Synthesis -- 9.3.1 Synthesis in Aqueous Solution -- 9.3.2 Synthesis in Non-Aqueous Solvent -- 9.4 Nanoparticle Surface Functionalization -- 9.4.1 Hydrophobic Nanocrystals -- 9.4.2 Water Soluble Nanocrystals -- 9.5 Microwave-Assisted Chemistry -- 9.5.1 Microwave-Assisted Synthesis of Nanoparticles.

9.5.2 Microwave-Assisted Functionalization of Nanoparticles -- 9.6 Conclusions -- References -- 10: Microwave-Assisted Continuous Synthesis of Inorganic Nanomaterials -- 10.1 Introduction and Overview -- 10.2 Microwave-Assisted Continuous Synthesis of Inorganic Nanomaterials -- 10.3 Types of Microwave Apparatus Used in Continuous Synthesis -- 10.4 Microwave Continuous Synthesis of Molecular Sieve Materials -- 10.5 Microwave Continuous Synthesis of Metal Oxides and Mixed Metal Oxide Materials -- 10.6 Microwave Continuous Synthesis of Metallic Nanomaterials -- 10.7 Conclusions and Outlook -- References -- 11: Microwave Plasma Synthesis of Nanoparticles: From Theoretical Background and Experimental Realization to Nanoparticles with Special Properties -- 11.1 Introduction -- 11.2 Using Microwave Plasmas for Nanoparticle Synthesis -- 11.2.1 General Comments on Plasmas -- 11.2.2 Considerations in a Microwave Plasma -- 11.2.3 Particle Formation -- 11.2.4 Characterization of Nanoparticles -- 11.3 Experimental Realization of the Microwave Plasma Synthesis -- 11.3.1 Custom-Made Applicators -- 11.3.2 Coated Nanoparticles and Particle Collection -- 11.4 Influence of Experimental Parameters -- 11.4.1 Precursor Selection -- 11.4.2 Influence of Precursor Concentration -- 11.4.3 Interdependence of Microwave Power, Pressure, Temperature, and Gas Velocity -- 11.4.4 Influence of Residence Time in the Plasma on Particle Size -- 11.4.5 Summary of Experimental Parameters -- 11.5 Nanoparticle Properties and Application -- 11.5.1 Ferrimagnetic Nanoparticles -- 11.5.2 Gas-Sensing Nanoparticles -- 11.5.3 Nanoparticles for Anodes in Li-Ion Batteries -- 11.6 Summary -- References -- 12: Oxidation, Purification and Functionalization of Carbon Nanotubes under Microwave Irradiation -- 12.1 Introduction -- 12.2 Oxidation and Purification -- 12.3 Functionalization -- 12.4 Conclusion.

References -- Index.
Abstract:
For the first time, this comprehensive handbook presents the emerging field of microwave technology for the synthesis of nanoparticles. Divided into three parts--fundamentals, methods, and applications--it covers topics including microwave theory, scale-up, microwave plasma synthesis, characterization, and more. This offers both an important volume for academic researchers, and a resource for those in industry exploring the applications of nanoparticles in semiconductors, electronics, catalysis, sensors, and more.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: