
Patterning and Cell Type Specification in the Developing CNS and PNS : Comprehensive Developmental Neuroscience.
Title:
Patterning and Cell Type Specification in the Developing CNS and PNS : Comprehensive Developmental Neuroscience.
Author:
Rubenstein, John.
ISBN:
9780123973481
Personal Author:
Physical Description:
1 online resource (993 pages)
Contents:
Front Cover -- Comprehensive Developmental Neuroscience: Patterning and Cell Type Specification in the Developing CNS and PNS -- Copyright -- Editors-in-Chief -- Section Editors -- Contents -- Contributors -- Introduction to Comprehensive Developmental Neuroscience -- Section I: Induction and Patterning of the CNS and PNS -- Chapter 1: Telencephalon Patterning -- 1.1. Introduction -- 1.2. Telencephalon Induction -- 1.2.1. The Anterior Neural Ridge -- 1.2.2. FGF Signaling -- 1.2.3. Wnt Antagonism -- 1.2.4. Interactions of Low Wnt with FGFs and BMPs -- 1.3. Overview of Early Telencephalic Subdivisions -- 1.4. Establishing Dorsal Versus Ventral Domains -- 1.4.1. Shh and Gli3, Two Key Players -- 1.4.2. Foxg1 and FGFs Cooperatively Promote Ventral Development -- 1.4.3. Establishing the Dorsal Telencephalic Domain -- 1.4.4. Sharpening the Dorsal-Ventral Border -- 1.4.5. The Olfactory Bulbs -- 1.5. Boundary Structures as Organizing Centers and CR Cell Sources -- 1.5.1. Nomenclature of Domains in the Early Telencephalic Neuroepithelium -- 1.5.2. Specification of the Hem and the Antihem -- 1.5.2.1. Molecular Mechanisms that Act to Position and Specify the Cortical Hem -- 1.5.2.2. Molecular Mechanisms that Act to Specify and Position the Antihem -- 1.5.3. CR Cells Arise from Four Telencephalic Boundary Structures -- 1.5.4. Organizer Functions of Telencephalic Boundary Structures -- 1.5.4.1. Rostral Signaling Center/Septum -- 1.5.4.2. Hem -- 1.5.4.3. Antihem -- 1.6. Subdividing Ventral Domains -- 1.6.1. The Striatum and Pallidum -- 1.6.2. The Amygdala -- 1.6.3. An Evolutionary Perspective for How the Neocortex Arose? -- 1.6.4. Lineage and Fate Mapping in the Ventral Telencephalon -- 1.7. Conclusions -- Acknowledgments -- References -- Chapter 2: Morphogens, Patterning Centers, and their Mechanisms of Action -- 2.1. General Principles of Morphogen Gradients.
2.1.1. History of the Morphogen and Morphogenetic Field -- 2.1.2. How Morphogen Gradients Pattern Tissues -- 2.1.3. How Morphogens Are Distributed -- 2.1.4. How Morphogen Signaling Is Transduced and Interpreted -- 2.1.5. How Morphogen Gradients Are Converted into Sharp Boundaries -- 2.1.6. Summary: General Principles of Morphogen Gradients -- 2.2. Local Signaling Centers and Probable Morphogens in the Telencephalon -- 2.2.1. Early Forebrain Patterning -- 2.2.2. The Anteromedial Cerebral Pole -- 2.2.3. The Telencephalic RP and Cortical Hem -- 2.2.4. The Antihem -- 2.3. BMPs as Morphogens in Telencephalic Patterning -- 2.3.1. Performance Objectives for a BMP Gradient in the Dorsal Telencephalon -- 2.3.2. Midline Expression and Homeogenetic Expansion of BMP Production -- 2.3.3. The BMP Signaling Gradient in the Dorsal Telencephalon -- 2.3.4. Evidence for BMPs as Dorsal Telencephalic Morphogens -- 2.3.5. Linear Conversion of BMP Signaling by Cortical Cells -- 2.3.6. Nonlinear Conversion of BMP Signaling by DTM Cells -- 2.3.7. Summary: The BMP Signaling Gradient -- 2.4. FGFs as Morphogens in Telencephalic Patterning -- 2.4.1. Patterning the Neocortical Area Map -- 2.4.2. Distribution of FGF8 in the Neocortical Primordium -- 2.4.3. How NP Cells Interpret an FGF8 Gradient -- 2.4.4. FGF Signaling in the Dorsoventral Division of the Telencephalon -- 2.4.5. Functions of More Broadly Distributed FGFs in the Dorsal Telencephalon -- 2.5. Interactions Among Signaling Centers in Telencephalic Patterning -- 2.5.1. FGF8, Shh, and BMP Signaling -- 2.5.2. Cross-Regulation of BMP, FGF, and WNT Signaling, Integrated by Emx2 -- 2.5.3. Interactions of Shh, FGFs, and Gli3 -- 2.5.4. Downstream Interactions -- 2.6. Morphogens in Human Brain Disease -- 2.6.1. Holoprosencephaly and Kallmann Syndrome -- 2.6.2. Gradients in HPE Neuropathology.
2.6.3. Gradients in Other Human Brain Disorders -- References -- Chapter 3: Midbrain Patterning: Isthmus Organizer, Tectum Regionalization, and Polarity Formation -- 3.1. Function and Development of the Midbrain -- 3.1.1. Plan of the Vertebrate Brain -- 3.1.2. Brief Outline of the Midbrain (Mesencephalon) -- 3.1.3. Development of the Tectum -- 3.1.4. Optic Tectum as a Visual Center -- 3.1.4.1. Retinotectal Projection -- 3.2. Midbrain Regionalization -- 3.2.1. Gene Expression around the Midbrain at around Stage 10 -- 3.2.2. Midbrain-Hindbrain Boundary Formation -- 3.2.3. Diencephalon-Mesencephalon Boundary Formation -- 3.2.4. Dorsal-Ventral Patterning -- 3.2.4.1. Dorsal Patterning -- 3.2.4.2. Ventral Patterning -- 3.2.4.3. Mesencephalic Dopaminergic Neurons -- 3.3. Isthmus Organizer -- 3.3.1. Background -- 3.3.2. Isthmus Organizing Molecule -- 3.3.3. Isoforms of Fgf8 -- 3.3.4. Other Fgfs and Fgf Receptors -- 3.3.5. Transduction of Fgf8 Signal -- 3.3.6. Negative Regulators for Ras-ERK Signaling Pathway -- 3.3.7. Differential Patterning of Midbrain, Isthmus, and Cerebellum by Fgf8 Signaling -- 3.4. Isthmic Organizer and Tectum Polarity -- 3.4.1. Rostrocaudal Polarity of the Tectum -- 3.4.2. Positional Specification of the Tectum -- 3.4.3. Isthmic Organizer and the Rostrocaudal Polarity of the Tectum -- 3.5. Conclusion -- References -- Chapter 4: Area Patterning of the Mammalian Cortex -- 4.1. Introduction -- 4.2. Cortical Divisions and Components -- 4.2.1. Cerebral Cortex Divisions -- 4.2.2. Neocortical Areas -- 4.2.3. Thalamocortical Relationships -- 4.2.4. Origins of General Classes of Cortical Neurons -- 4.3. Naturally Occurring Differences in Area Patterning -- 4.3.1. Phylogenic Differences in Area Patterning -- 4.3.2. Differences in Area Patterning within a Species -- 4.4. Extrinsic Influences on Area Patterning.
4.4.1. Late Development of Area Patterning from an Early More Uniform CP -- 4.4.2. Development and Plasticity in Area-Specific Output Projections Related to Area Patterning -- 4.4.3. Area-Specific TCA Input and Potential Roles in Area Patterning -- 4.4.4. Sensory Periphery-Mediated Plasticity in Area Patterning -- 4.5. Intrinsic Genetic Mechanisms Regulating Arealization -- 4.5.1. Telencephalic Patterning Centers in Arealization -- 4.5.1.1. CoP: An Anterior Patterning Center -- 4.5.1.2. Cortical Hem: A Dorsal-Caudal Patterning Center -- 4.5.2. TF Expression by Cortical Progenitors Regulates Area Patterning -- 4.5.2.1. Emx2 -- 4.5.2.2. Pax6 -- 4.5.2.3. Sp8 -- 4.5.2.4. COUP-TFI -- 4.5.2.5. Interactions Between TFs to Regulate Area Patterning -- 4.6. Extent of Genetic Specification of Area-Specific Properties -- 4.6.1. Do Area-Unique Genes Exist? -- 4.6.2. What Is `Area Identity? ́-- 4.6.3. Genetic Determination of Cortical Projection Neurons Related to Arealization -- 4.6.4. Candidate Targets of TFs that Regulate Area Patterning -- 4.6.5. Translating Gradients of TFs into Sharp Borders -- 4.7. Regional Patterning of the Cerebral Cortex -- 4.8. Conclusions -- Acknowledgments -- References -- Chapter 5: The Formation and Maturation of Neuromuscular Junctions -- 5.1. Introduction -- 5.2. Neuromuscular Junctions are Comprised of Several Cell Types -- 5.3. The Formation of Neuromuscular Junctions Involves Bidirectional Signaling Among Cell Types -- 5.4. Formation of a Differentiated Postsynaptic Membrane: The Agrin-MUSK-ACH Hypothesis -- 5.5. Neuromuscular Synapse Elimination -- 5.6. Structural and Functional Changes at Neuromuscular Junctions During Synapse Elimination -- 5.7. Mechanisms of Synapse Elimination: Activity-Dependent Competition -- 5.8. Summary -- References -- Chapter 6: Neural Induction of Embryonic Stem/Induced Pluripotent Stem Cells.
6.1. Introduction to Embryonic Stem Cells and Induced Pluripotent Stem Cells -- 6.1.1. Origin of ES Cells -- 6.1.2. Reprogramming -- 6.1.3. Discovery of iPS Cells -- 6.2. Introduction to ES and iPS Neural Induction -- 6.3. Neural Progenitor Cells -- 6.4. Differentiation to Specific Regional Identities -- 6.4.1. Differentiation to Forebrain Cell Types -- 6.4.1.1. Cortex -- 6.4.1.2. Basal Ganglia -- 6.4.2. Differentiation to Midbrain Cell Types -- 6.4.3. Differentiation to Hindbrain Cell Types -- 6.4.3.1. Cerebellum -- 6.4.4. Differentiation to Spinal Cord Cell Types -- 6.4.4.1. Motor Neurons -- 6.4.4.2. Oligodendrocytes -- 6.5. Differentiation to Neural Crest Progenitor Cells -- 6.6. Direct Conversion of Fibroblasts to Neurons -- 6.7. Clinical Applications -- 6.7.1. Geron Clinical Trials for Spinal Cord Cell Replacement Therapy -- 6.7.2. Treating and Modeling PD -- 6.7.3. Modeling Familiar Dysautonomia Using iPS Cells -- 6.7.4. Modeling Spinal Muscular Atrophy Using iPS Cells -- 6.7.5. Novel Insights into the Cause of ALS Using ES Cells -- 6.8. Review -- References -- Chapter 7: Spinal Cord Patterning -- 7.1. Introduction -- 7.2. Major Concepts of Spinal Cord Patterning -- 7.3. Dorsoventral Patterning -- 7.3.1. Dorsoventral Patterning: Shh -- 7.3.2. Dorsoventral Patterning: BMPs -- 7.3.3. Dorsoventral Patterning: Wnts -- 7.3.4. Other Aspects of Dorsoventral Patterning -- 7.4. Rostrocaudal Patterning -- 7.4.1. Rostrocaudal Patterning: RA, FGFs, Gdf11, and the Hox Code -- 7.4.2. Rostrocaudal Patterning: Hox Expression in MNs -- 7.5. LIM/bHLH Factors and the Combinatorial Code -- 7.5.1. LIM Homeodomain Factors -- 7.5.2. bHLH Factors -- 7.5.3. Establishing Neural Identities through a Combinatorial Code -- 7.6. Cell-Cell Interactions -- 7.6.1. Notch-Delta Signaling -- 7.6.2. Retinoid Signaling -- 7.7. Glia in the Spinal Cord -- 7.7.1. Astrocytes.
7.7.2. Oligodendrocytes.
Abstract:
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 1 offers 48 high level articles devoted mainly to patterning and cell type specification in the developing central and peripheral nervous systems. Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop Features leading experts in various subfields as Section Editors and article Authors All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship Volume 1 sections include coverage of mechanisms which: control regional specification, regulate proliferation of neuronal progenitors and control differentiation and survival of specific neuronal subtypes, and controlling development of non-neural cells.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View