
Advances in Coding Theory and Cryptography.
Title:
Advances in Coding Theory and Cryptography.
Author:
Shaska, Tanush.
ISBN:
9789812772022
Personal Author:
Physical Description:
1 online resource (268 pages)
Series:
Series on Coding Theory and Cryptology ; v.3
Series on Coding Theory and Cryptology
Contents:
CONTENTS -- Preface -- List of authors -- The key equation for codes from order domains J. B. Little -- 1. Introduction -- 2. Codes from Order Domains -- 3. Preliminaries on Inverse Systems -- 4. The Key Equation and its Relation to the BMS Algorithm -- Acknowledgements -- References -- A Grobner representation for linear codes M. Borges-Quintana, M. A. Borges-Trenard and E. Mart nez-Moro -- 1. Introduction -- 2. Möller's algorithm -- 3. Gröbner representation of a linear code -- 4. Reduced and border bases -- 4.1. Binary codes -- 5. Applications -- 5.1. Gradient decoding -- 5.2. Permutation equivalent codes -- 5.3. Gröbner codewords for binary codes -- Acknowledgments -- References -- Arcs, minihypers, and the classification of three-dimensional Griesmer codes H. N. Ward -- 1. Introduction -- 2. Codes and the Griesmer bound -- 3. Codes and multisets -- 3.1. Arcs -- 3.2. Combinations -- 4. Minihypers -- 4.1. The Hamada bound -- 4.2. Achievement of the Griesmer bound -- 5. Divisibility -- 6. Three-dimensional Griesmer codes -- 6.1. Orphans -- 6.2. Divisibility -- 6.3. The [92, 3, 80]8 codes -- 6.4. Duality -- Acknowledgment -- References -- Optical orthogonal codes from Singer groups T. L. Alderson and K. E. Mellinger -- 1. Introduction -- 2. Preliminaries -- 3. A construction from arcs in d-flats -- 4. A construction from arcs of higher degree -- 5. Affine constructions -- 6. Conclusion -- Acknowledgments -- References -- Codes over Fp 2 and Fp x Fp, lattices, and theta functions T. Shaska and C. Shor -- 1. Introduction -- 2. Preliminaries -- 2.1. Theta functions over Fp -- 3. Theta functions of codes over R -- 3.1. A MacWilliams identity -- 3.2. A generalization of the symmetric weight enumerator polynomial -- 4. The injectivity of construction A -- 4.1. The case p = 2 -- 4.2. The case p > 2 -- Acknowledgment -- References.
Goppa codes and Tschirnhausen modules D. Coles and E. Previato -- Introduction -- 1. Goppa Codes and rank-2 Vector Bundles -- 2. The Klein Curve as Cover -- 3. The Tschirnhausen Module of the Cover -- 4. Goppa Codes and Adeles -- 4.1. Adeles and pseudo-differentials -- 4.2. Goppa codes and adeles -- Acknowledgements -- References -- Remarks on s-extremal codes J.-L. Kim -- 1. Introduction -- 2. s-Extremal Additive F4 Codes -- 3. s-Extremal Binary Codes -- 4. Conclusion -- Acknowledgments -- References -- Automorphism groups of generalized Reed-Solomon codes D. Joyner, A. Ksir and W. Traves -- 1. Introduction -- 2. AG codes and GRS codes -- 3. Automorphisms -- 4. Examples -- 5. Structure of the representations -- References -- About the code equivalence I. G. Bouyukliev -- 1. Introduction -- 2. Codes and binary matrices -- 2.1. Equivalence of linear codes -- 2.2. Isomorphism of binary matrices -- 2.3. The connection between equivalence of linear codes and isomorphism of binary matrices -- 3. Orbits, partitions, invariants -- 3.1. Orbits -- 3.2. Partitions, ordered partitions -- 3.3. Definition of invariants -- 3.4. Properties of partitions induced by invariants -- 3.5. Invariants of columns and rows -- 4. Main algorithm -- 4.1. Additional invariants -- 5. Efficiency and storage requirements -- References -- Permutation decoding for binary self-dual codes from the graph Qn where n is even J. D. Key and P. Seneviratne -- 1. Introduction -- 2. Background and terminology -- 3. Binary codes of cubic graphs -- 4. 3-PD-sets -- 5. Discussion -- References -- The sum-product algorithm on small graphs M. E. O'Sullivan, J. Brevik and R. Wolski -- 1. Introduction -- 2. Experimental Results -- 3. Analysis of the Sum-Product Algorithm -- Bipartite Graphs -- The Sum-Product Algorithm -- 4. Examples -- 2 bits n checks -- 4-Choose-2.
3-to-1 covers of the complete 2-bits-3-checks graph -- Degradation of performance with the coarse termination criterion -- 5. Concluding Remarks -- References -- On the extremal graph theory for directed graphs and its cryptographical applications V. A. Ustimenko -- 1. Introduction -- 2. Binary relations, related rainbow-like graphs and algorithms -- 2.1. Binary relations and special colorings -- 2.2. General symmetric algorithm -- 2.3. Symbolic computations and public keys -- 2.4. Coding theory, other applications -- 3. The incidence structures defined over commutative rings -- 4. Symmetric encryption, algorithms related to graphs RF(n,K) -- 4.1. The encryption algorithm -- 4.2. Decryption procedure -- 4.3. Examples -- 5. Public keys -- 6. Other algebraic parallelotopic graphs -- 7. Remarks on implementation -- References -- Fast arithmetic on hyperelliptic curves via continued fraction expansions M. J. Jacobson, Jr., R. Scheidler and A. Stein -- 1. Introduction and Motivation -- 2. Continued Fraction Expansions -- 3. Hyperelliptic Curves -- 3.1. Imaginary Curves -- 3.2. Unusual Curves -- 3.3. Real Curves -- 4. Reduced Ideals and Divisors -- 4.1. Imaginary Curves -- 4.2. Unusual Curves -- 4.3. Real Curves -- 5. Reduction and Baby Steps -- 6. Giant Steps and the Idea of NUCOMP -- 6.1. Imaginary Curves -- 6.2. Unusual Curves -- 6.3. Real Curves -- 7. NUCOMP -- 8. Giant Steps with NUCOMP -- 9. NUCOMP Algorithms -- 10. An Extra Reduced Divisor -- 11. Numerical Results -- 11.1. Binary Exponentiation -- 11.2. Key Exchange -- 12. Conclusions -- References -- The number of inequivalent binary self-orthogonal codes of dimension 6 X.-D. Hou -- 1. Introduction -- 2. Method of Computation -- Appendix. Tables -- References.
Abstract:
In the new era of technology and advanced communications, coding theory and cryptography play a particularly significant role with a huge amount of research being done in both areas. This book presents some of that research, authored by prominent experts in the field.The book contains articles from a variety of topics most of which are from coding theory. Such topics include codes over order domains, Groebner representation of linear codes, Griesmer codes, optical orthogonal codes, lattices and theta functions related to codes, Goppa codes and Tschirnhausen modules, s-extremal codes, automorphisms of codes, etc. There are also papers in cryptography which include articles on extremal graph theory and its applications in cryptography, fast arithmetic on hyperelliptic curves via continued fraction expansions, etc. Researchers working in coding theory and cryptography will find this book an excellent source of information on recent research.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View