Cover image for Condensed Matter Physics in the Prime of 21st Century : Phenomena, Materials, Ideas, Methods - 43rd Karpacz Winter School of Theoretical Physics.
Condensed Matter Physics in the Prime of 21st Century : Phenomena, Materials, Ideas, Methods - 43rd Karpacz Winter School of Theoretical Physics.
Title:
Condensed Matter Physics in the Prime of 21st Century : Phenomena, Materials, Ideas, Methods - 43rd Karpacz Winter School of Theoretical Physics.
Author:
Jedrzejewski, Janusz.
ISBN:
9789812709455
Personal Author:
Physical Description:
1 online resource (372 pages)
Contents:
CONTENTS -- Preface -- Organizing Committees -- Dynamical Mean-Field Theory for Correlated Lattice Fermions K. Byczuk -- 1. Introduction -- 2. Correlation and correlated electron systems -- 2.1. Correlations -- 2.2. Weakly correlated many-particle systems -- 2.3. Strongly correlated many-particle systems -- 2.4. Correlated fermions and inhomogeneous potentials -- 3. Disorder and disordered electron systems -- 4. Models for correlated, disordered lattice fermions with inhomogeneous potentials -- 4.1. Hubbard model -- 4.2. Models for external inhomogeneous potential -- 4.3. Anderson model -- 4.4. Models for disorders -- 4.5. Anderson-Hubbard model -- 4.6. Anderson-Falicov-Kimball model -- 5. Average over disorder -- 5.1. Average and most probable value -- 5.2. Generalized mean -- 6. Static mean-field theory -- 6.1. Exchange Hamiltonian -- 6.2. Static mean-field approximation -- 6.3. Large dimensional limit -- 7. The Holy Grail for lattice fermions or bosons -- 8. DMFT - practical and quick formulation -- 8.1. Exact partition function, Green function, and self-energy -- 8.2. DMFT approximation -- 8.3. Local Green function -- 8.4. Local approximation to Dyson equation -- 8.5. Dynamical mean-field function -- 8.6. Self-consistency conditions -- 9. Limit of large coordination number -- 10. Surprising results from DMFT -- 10.1. Metal-insulator transition at fractional filling -- 10.2. Disorder-induced enhancement of the Curie temperature -- 10.3. Continuously connected insulating phases in strongly correlated systems with disorder -- 11. Conclusions -- Acknowledgments -- References -- Jordan-Wigner Fermionization and the Theory of Low-Dimensional Quantum Spin Models. Dynamic Properties O. Derzhko -- 1. Introduction (Spin models, dynamic probes etc.) -- 2. The Jordan-Wigner transformation -- 3. Generalization of the Jordan-Wigner transformation.

4. Spin-1/2 isotropic XY chain in a transverse field: dynamic quantities -- 4.1. Two-fermion excitations -- 4.2. Four-fermion excitations -- 4.3. Many-fermion excitations -- 5. Dimerized spin-1/2 isotropic XY chain in a transverse field -- 6. Spin-1/2 XY chains with the Dzyaloshinskii-Moriya interaction -- 7. Square-lattice spin-1/2 isotropic XY model -- 8. Conclusions -- Acknowledgments -- References -- Quantum Computing with Electrical Circuits: Hamiltonian Construction for Basic Qubit-Resonator Models M.R. Geller -- 1. Quantum gate design -- 2. The phase qubit -- 3. Qubit-oscillator models -- 3.1. JJ coupled to parallel LC oscillator -- 3.2. JJ coupled to series LC oscillator -- 3.3. Relation to capacitively coupled qubits -- 4. Qubit coupled to electromagnetic resonator -- 4.1. Summary of results and mapping to qubit-oscillator -- 4.2. Continuum resonator model -- 4.3. LC network resonator model -- 4.4. Relation between node-ux and polarization representations -- Acknowledgments -- References -- Coherent Control and Decoherence of Charge States in Quantum Dots P. Machnikowski -- 1. Introduction -- 2. Essential properties of quantum dots -- 3. Coherent control: experimental state of the art -- 4. Quantum dot as a two-level system -- 4.1. General considerations -- 4.2. Pulse area dependent Rabi oscillations -- 4.3. Time-domain interference -- 5. Beyond the two levels: optically driven evolution in a biexciton system -- 5.1. Two-photon Rabi oscillations -- 5.2. Quantum complementarity in time-domain interference experiments -- 6. Carrier-phonon interaction in quantum dots -- 7. Theoretical methods for carrier-phonon kinetics -- 7.1. Exact solution for ultrafast excitations -- 7.2. Perturbation theory for driven systems -- 7.3. Correlation expansion -- 8. Conclusion -- References.

Basics of Spintronics: From Metallic to All-Semiconductor Magnetic Tunnel Junctions J.A. Majewski -- 1. Introduction -- 1.1. Spintronics and magnetoelectronics -- 1.2. Magnetic tunnel junctions -- 2. TMR in FM/I/FM magnetic tunnel junctions -- 2.1. Dependence of TMR on external bias -- 2.2. Dependence of TMR on ferromagnet -- 2.3. Dependence of TMR on the barrier -- 2.4. Inuence of interfaces on TMR -- 2.5. Various TMR structures -- 3. Theory of TMR in FM/I/FM tunnel junctions -- 3.1. Free electron models -- 3.2. Physical insight gained by free electron models -- 3.3. Green's function tight-binding models -- 3.4. First-principles calculations -- 3.5. Models for disordered structures -- 4. Tunneling magnetoresistance in junctions based on ferromagnetic semiconductors -- 4.1. Free carrier models of FS/S/FS tunnel junctions -- 4.2. Full band model for all-semiconductor MTJs -- 4.3. Bias dependence of TMR in FS/S/FS TMJs -- 5. Conclusions -- Acknowledgments -- References -- Physics of Carbon Nanostructures V.A. Osipov -- 1. Introduction -- 2. Defects, geometry, electronic structure -- 3. Continuum field-theory model -- 4. Carbon nanostructures of different geometries -- 4.1. Nanocones -- 4.2. One-sheet hyperboloids -- 4.3. Nanotubes -- 4.4. Icosahedral fullerenes -- 4.5. Spheroidal fullerenes -- 5. Conclusions -- Acknowledgments -- References -- Quantum Molecular Dynamics Simulations for Warm Dense Matter and Applications in Astrophysics R. Redmer, N. Nettelmann, B. Holst, A. Kietzmann and M. French -- 1. Introduction -- 2. Quantum molecular dynamics simulations -- 2.1. Description of the method -- 2.2. Equation of state -- 2.3. Dynamic conductivity -- 3. Planetary models and EOS of WDM -- 3.1. General structure of giant planets -- 3.2. Numerical modelling of giant planets -- 4. Results for Jupiter -- 5. Conclusions -- Acknowledgments -- References.

Correlated Systems on Geometrically Frustrated Lattices: From Magnons to Electrons J. Richter and O. Derzhko -- 1. Introduction -- 2. Localized magnon states in antiferromagnets on frustrated lattices -- 2.1. Flat bands and localized eigenstates -- 2.2. Exotic magnetization curves -- 2.3. Field-induced spin-Peierls transition -- 2.4. Finite ground-state residual entropy -- 2.5. Universal low-temperature thermodynamics -- 2.6. Finite-temperature phase transitions -- 2.7. Magnetic cooling -- 3. Correlated Hubbard electrons on geometrically frustrated lattices -- 4. Summary -- Acknowledgments -- References -- Full-Potential Local-Orbital Approach to the Electronic Structure of Solids and Molecules M. Richter, K. Koepernik and H. Eschrig -- 1. Introduction -- 2. Why yet another DFT solver? -- 3. LCLO equations and core-valence transformation -- 4. Three strategies to define the local basis -- 5. Summary -- Acknowledgments -- References -- Theory of Dynamical Thermal Transport Coefficients in Correlated Condensed Matter B. Sriram Shastry -- 1. Introduction -- 2. Hall constant -- 3. Thermoelectric response -- 3.1. Luttinger's gravitational field analogy -- 3.2. Finite thermal response functions -- 3.3. Onsager reciprocity at finite frequencies -- 3.4. General formulas for Lij(!) -- 3.5. High frequency behaviour -- 3.6. Sum rules for electrical and thermal conductivity -- 3.7. Dispersion relations for thermopower, Lorentz number and gure of merit -- 4. Thermoelectric phenomena in correlated matter -- 4.1. Limiting case of free electrons, S the Heikes Mott and Mott results -- 4.2. Kelvin's thermodynamical formula for thermopower -- 4.3. Applications to sodium cobaltates in the Curie Weiss metallic phase -- 4.4. High temperature expansion for thermopower -- 4.5. Lorentz number and gure of merit for the triangular lattice t - J model -- Acknowledgement.

References -- Carrier Concentration Induced Ferromagnetism in Semiconductors T. Story -- 1. Introduction: ferromagnetic semiconductors - materials review -- 2. Diluted magnetic (semimagnetic) semiconductors (DMS) - crystal structure, magnetic doping, and basic physical concepts -- 3. Carrier concentration induced ferromagnetism in IV-VI DMS: p-(Sn,Mn)Te, p-(Pb,Sn,Mn)Te, and p-(Ge,Mn)Te -- 4. Magnetic phase diagram of DMS materials governed by the RKKY interaction -- 5. Ferromagnetism in III-V DMS induced by conducting holes: p-(Ga,Mn)As, p-(In,Mn)As, and p-(In,Mn)Sb -- 6. Antiferromagnet-ferromagnet transition in n-(Eu,Gd)Te induced by conducting electrons -- 7. Summary - search for new ferromagnetic semiconductors for spintronics -- References -- Acknowledgments -- References -- Index.
Abstract:
This is a collection of lectures by 11 active researchers, renowned specialists in a number of modern, promising, dynamically-developing research directions in condensed matter/solid state theory. The lectures are concerned with phenomena, materials and ideas, discussing theoretical and experimental features, as well as with methods of calculation.Readers will find up-to-date presentations of the methods of carrying out efficient calculations for electronic systems and quantum spin systems, together with applications to describe phenomena and to design new materials. These applications include systems of quantum dots, quantum gates, semiconductor materials for spintronics, and the unusual characteristics of warm dense matter.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: